在三角形abc中2acosc=2b-根号3c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:10:40
acosC+√3asinB-b-c=0利用正弦定理a/sinA=b/sinB=c/sinCsinAcosC+√3sinAsinC-sinB-sinC=0∵sinB=sin(A+C),sinAcosC+
若是锐角三角形,作高AD、BE、CF,BD=AB*cosB=c*cosB,CD=AC*cosC=b*cosC,a=BC=BD+CD=c*cosB+b*cosC,同理可证,b=acosC+ccosA,c
在三角形ABC中,若acosB+bcosC+ccosA=bcosA+ccosB+acosC求三角形的形状?方程变形为(a-c)cosB+(b-a)cosC+(c-b)cosA=0.因为cosA=cos
c/a=sinC/sinAb/a=sinB/sinA原式两边除以a得sinB(sinC/sinA-cosB)=sinC(sinB/sinA-cosC)sinBsinC/sinA-sinBcosB=si
1,acosC+c/2=bcosC=(2b-c)/2acosC=(a^2+b^2-c)^2/2ab(2b-c)/2a=(a^2+b^2-c)^2/2aba^2+b^2-c^2=2b^2-bcb^2+c
(√3b-c)cosA=acosC(√3sinB-sinC)cosA=sinAcosC√3sinBcosA=sinAcosC+sinCcosA√3sinBcosA=sin(A+C)√3sinBcosA
余弦定理射影定理a=b·cosC+c·cosB,b=c·cosA+a·cosC,c=a·cosB+b·cosA.画个三角形,做高,立马出来(例如第一个,作a上的高)
将(2b-根号3c)cosA=根号3acosC代入正弦定理得:(2sinB-根号3sinC)cosA=根号3sinAcosC,A为30°选12ABC为钝角三角形,用正弦定理得b为2根号2,C为105°
(√3×b-c)cosA=acosC根据正弦定理(√3sinB-sinC)cosA=sinAcosC∴√3sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB∵sinB>0
∠A=60° 我用的是几何方法,画出图.作BD⊥AC,设AD=x那么cosA=AD/AB=x/ccosC=CD/CB=(b-x)/a代入(2b-c)cosA-acosC=0得(2b-c)x/
(1)2bcosA=√3ccosA+√3acosC=√3(ccosA+acosC)=√3b∴cosA=√3/2∴A=30°(2)若a=2B=45°则:2/sin30°=b/sin45°,∴b=2√2,
∵cosC=(a^2+b^2-c^2)/(2ab),cos=(b^2+c^2-a^2)/(2bc),2acosC+ccosA=b,∴解得a^2+b^2=c^2,所以三角形ABC是以∠C=90°的直角三
1.sinAcosC+根号3/2sinC=sinB又∵sinB=sinAcosC+cosAsinC∴cosA=根号3/2∴A=π/62.a=1,根号3c=1+2b代入原式得cosC+(1+2b)/2=
(2b-c)cosA-acosC=0由正弦定理得2sinBcosA-sinCcosA-sinAcosC=0∴2sinBcosA-sin(A+C)=0,2sinBcosA-sinB=0,∵A、B∈(0,
(1)2bcosA=ccosA+acosC=b所以cosA=1/2A=π/3(2)B+C=π-π/3=2π/3所以0
A=60度,简单的余弦公式的应用,
画个三角形ABC,作出AC边上的高,会发现CcosA+acosC=AC=b所以COSA=1/2所以A是60度
根据余弦定理可得cosA=(a2-b2-c2)/2bc,cosC=(c2-a2-b2)/2ab代入原式即为(2b-c)(a2-b2-c2)/2bc-a(c2-a2-b2)/2ab=0展开(a2-b2-
acosC=ccosAa/c=cosA/cosC=sinA/sinCcosAsinC-sinAcosC=0sin(C-A)=0C=A∵B=60∴A+B+C=60+2A=180A=60∴是等边三角形
仅证明a=bcosC+ccosB做边a高,然后可以得出a被分成的两部分是bcosC和ccosB如果BC有一个是钝角,情况类似另外两个一样推法