在三角形ABC中,若COSA等于2分之一,tanB等于3分之根号3,则sinb
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:24:54
由(sinA+sinB)/sinC=(a+b)/c=cosA+cosB=(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ac得:a^3+b^3+a^2b+ab^2-ac^2-bc^2
你的答案看不懂.结果得负根号15
a/cosB=b/cosAa/b=cosB/cosA由正弦定理a/sinA=b/sinB所以a/b=sinA/sinB所以cosB/cosA=sinA/sinBsinAcosA=sinBcosB2si
(√3b-c)cosA=acosC(√3sinB-sinC)cosA=sinAcosC√3sinBcosA=sinAcosC+sinCcosA√3sinBcosA=sin(A+C)√3sinBcosA
D如果是锐角每个角的正弦余弦都会是正的直径则会等于0只有是钝角时,会出现负值
由正弦定理知:a=2RsinA,b=2RsinB,c=2RsinC,代入CosA/a=CosB/b=SinC/c得:CosA/(2RsinA)=CosB/(2RsinB)=SinC/(2RsinC)则
cosA+cosB=sinC=sin(A+B)2cos[(A+B)/2]cos[(A-B)/2]=2sin[(A+B)/2]cos[(A+B)/2]cos[(A+B)/2]{cos[(A-B)/2]-
(sinA)^2+(cosA)^2=1
(√3×b-c)cosA=acosC根据正弦定理(√3sinB-sinC)cosA=sinAcosC∴√3sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB∵sinB>0
正弦定理学过吧!就是a/sinA=b/sinB=c/sinC=2R(R是△ABC外接圆半径).这题用正弦定理代换一下就能够得到(√3sinB-sinC)cosA=sinA*cosC即√3sinB*co
题目应该是这样子吧:证明:在锐角三角形ABC中,cosA90°,∴B>90°-A,A>90°-B,正弦函数在(0°,90°)上是增函数,所以sinB>sin(90°-A),sinA>sin(90°-B
(sinA)^2=(sinB)^2+(sinC)^2+cosBcosC+cosA,cosA=-cosBcosC+sinBsinC,sinA=sinBcosC+cosBsinC,展开.(sinBcosC
∵cosB/cosA=a/b又:根据正弦定理:a/b=sinA/sinB∴cosB/cosA=sinA/sinB∴cosAsinA=cosBsinB∴2sinAcosA=2sinBcosB∴sin2A
B+C=180-ACOS(180-A)=-COSA诱导公式
由sinA+cosA=1/2,(1)sin²A+cos²A=1(2)(1)两边平方:sin²A+2sinAcosA+cos²A=1/4,将(2)代入:sinAc
应该是等边三角形吧.由题意cosA/a=cosB/bb/a=cosB/cosA.再有正玄定理得sinA/a=sinB/bb/a=sinB/sinA综上cosB/cosA=sinB/sinA把这个式子两
因为cosA=4/5,所以sinA=3/5,因为cosB=12/13,所以sinB=5/13,在三角形ABC中,由正弦定理得:a/sinA=b/sinBa/b=sinA/sinB=3/5/5/13=3
cosA/cosB=b/aa/b=cosB/cosA由正弦定理a/sinA=b/sinB所以a/b=sinA/sinB所以cosB/cosA=sinA/sinBsinAcosA=sinBcosB2si
由正弦定理a=2RsinAb=2RsinB1-cosA/(1-cosB)=a/b1-cosA/(1-cosB)=sinA/sinB(1-cosA)*sinB=(1-cosB)*sinA(1-cosA)