在三角形ABC中,若a=61,b=56,c=9
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:34:32
答案:A解析:∵(sina+cosa)^2=1+2sinacosa=49/144即:sin2A=49/144-1=-95/144180即A>90故是钝角三角形
sinA/a=cosB/b=cosC/c同乘以abc:bcsinA=accosB=abcosC因为三角形ABC面积S=1/2*bcsinA=1/2*acsinB=1/2*absinC所以cosB=si
SinA/a=CosB/b=CosC/c=sinB/b=sinC/csinB=cosBsinC=cosC知B=45C=45A=180-(B+C)=90∴是直角等腰三角形
a/cosB=b/cosAa/b=cosB/cosA由正弦定理a/sinA=b/sinB所以a/b=sinA/sinB所以cosB/cosA=sinA/sinBsinAcosA=sinBcosB2si
cos²(A/2)=(1+cosA)/2=sinBsinC1+cos(180-B-C)=2sinBsinC1-cos(B+C)=2sinBsinC1-(cosBcosC-sinBsinC)=
由正弦定理a/sinA=b/sinB=c/sinC=2R,sin²A+sin²B=sin²C两边同乘以4R²得(2RsinA)²+(2RsinB)
tanA/tanB=[sinA/cosA]/[sinB/cosB]=a²/b²=sin²A/sin²B,即:sinAcosA=sinBcosB,2sinAcos
a=2bcosc根据余弦定理有a=2b*(a^2+b^2-c^2)/2ab=a^2+b^2-c^2/a则有a^2=a^2+b^2-c^2则有b=c此三角形的形状是等腰三角形
由正弦定理知:a=2RsinA,b=2RsinB,c=2RsinC,代入CosA/a=CosB/b=SinC/c得:CosA/(2RsinA)=CosB/(2RsinB)=SinC/(2RsinC)则
等边三角形a/sinB=b/sinC=c/sinA=(a+b+c)/(sina+sinb+sinc)a/sina=b/sinb=c/sinc=(a+b+c)/(sina+sinb+sinc)所以a/s
等腰rt三角形=>S=ab/2=1*1/2=1/2...ans
三角形的面积=4分之根号3a²再问:亲,咱写点过程,好吗,谢啦。再答:边长是a,高与边长在一个直角三角形内,两个锐角分别是30°和60°,所以高是4分之根号3a所以面积是4分之根号3a
由正弦定理和已知可以得到:a^2=b^2+c^2.所以三角形为直角三角形.
等腰直角三角形.由a=c*cosB⇒cosB=a/c由余弦定理cosB=(a²+c²-b²)/2ac得a/c==(a²+c²-b²
∵cosB/cosA=a/b又:根据正弦定理:a/b=sinA/sinB∴cosB/cosA=sinA/sinB∴cosAsinA=cosBsinB∴2sinAcosA=2sinBcosB∴sin2A
最常见的勾股玄:3、4、5(5-3=2)于是有:6、8、10(10-6=4)于是有:9、12、15(15-9=6)于是面积:9*12/2=54
a²+b²=c²=100(a+b)²=14²=196a²+2ab+b²=196∴ab=48∴SΔABC=1/2×ab=24希望帮助
sin(A/2)=cos((A+B)/2),得sin(A/2)=cos(90度-(C/2))=sin(C/2)就有A/2=C/2或A/2=180度-C/2,故A=C(A+C=360度舍去),因此三角形
应该是等边三角形吧.由题意cosA/a=cosB/bb/a=cosB/cosA.再有正玄定理得sinA/a=sinB/bb/a=sinB/sinA综上cosB/cosA=sinB/sinA把这个式子两
cos²(A/2)=(1/2)[cosA+1]=(sinB+sinC)/2sinC,即:sinC(cosA+1)=sinB+sinC=sin(A+C)+sinCsinCcosA+sinC=s