在三角形abc中,点G是重心,那么s三角形ABG
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:09:52
=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0
重心,三中线交点.连接AG交BC于D点,BD=1\2BC=4,AD=√AB平方BD平方=3,AG=2/3AD=2.
连接AG交BC于F因为G是重心,所以AG/AF=2/3因为DE平行于BC,所以△ABC相似于△ADE.则三角形ADE与四边形DBCE的面积之比为(2/3)^2=4/9
AG=2GDS△ACG:S△ABD=2:3
S△ACG:S△ABD=2:3
如图,由题可知,ED是△ABC的中位线∴ED=1/2BC .①∵M,N为重心,取B
由于G是三角形ABC的重心所以FD/AB=2/3,那么AF/AC=(AC-CF)/AC=1-CF/AC=1-FD/AB=1/3由于AC=根2AB,代入上式,得到AF/AB=根2/3AE/AB=FD/A
第(1)问简单,不多说,第(2)问发了图片
如图,连接ED.由题可知,ED是△ABC的中位线∴ED=1/2BC .①∵M,N为
如图:1.向量运算的平行四边形法则 2.重心的性质, 1:2可得答案 A
证明:建立空间直角坐标系O-XYZ设A(0,0,0)C(b,a,0)D1(0,a,c)D(0,a,0)B1(b,0,c)由三角形重心坐标公式可得G(b/3,2a/3,c/3)向量GD(-b/3,a/3
在AB上取E点使AE=AB/3.设AC中点为D.BE/BA=BG/BD=2/3,∠ABD=∠EBG△ABD∽△EBG,EG//=2*AD/3=AC/3向量AE=三分之一向量AB向量EG=三分之一向量A
重心是中线的交点;则:向量OG=(向量OA+向量OB+向量OC)/3
AG交BC中点M即AM中线向量AG=(2/3)向量AM...(1)向量AM=向量AB+向量BM向量AM=向量AC+向量CM=>2*向量AM=向量AB+向量AC+(向量BM+向量CM=0向量)=向量AB
重心是三条中线的交点延长CG交AB于E,因为G是三角形ABC的重心,所以CE为斜边AB上的中线,所以CE=AE=BE所以角BAC=角ACE因为角ACB=角AGC=90度所以三角形CGA相似于三角形AB
(原题少了DE∥BC的条件)如图,点M、N为AB、AC中点,BM、CN交于P,则MN∥BC,且MN=BC/2,由△PMN∽△PBC得PM/PB=MN/BC=1/2; 当DE∥BC时∴ME/E
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
答案等于三分之二根号三
证明如下设O,H分别为外心和垂心取BC中点M,连接AM交OH于G,下面只要证明G是重心就行了OM⊥BCAH⊥BCΔAHG∽ΔMOG⇒AG/GM=AH/OM作ME∥BH交CH于E,取AC中点