在三角形ABC中,满足bcosC 根号3bsinC-a-c=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:10:11
A=45`a/sinA=c/sinCc=6*根号2
sinB+sinC=2sin[(B+C)/2]cos[(B-C)/2].cosB+cosC=2cos[(B+C)/2]cos[(B-C)/2].所以由条件可得:sin[(B+C)/2]=sinAcos
(aA+bB+cC)/(a+b++c)是某个三角形三个角的标准加权平均值,故三角形ABC中必然满足π/3≤(aA+bB+cC)/(a+b++c)
解由正弦定理:a/sinA=b/sinA,得:sinB=(b/a)sinA,所以,asinA·sinB+bcos²A=asinA(b/a)sinA+bcos²A=bsina
由和差化积公式:sinA=sin(B+C)=sinBcosC+cosBsinC=2sinBcosC,所以cosBsinC-sinBcosC=0,即sin(B-C)=0.从而B=C,因此三角形ABC是等
等腰三角形.AB单位向量和AC单位向量设为AM,其基线为角A角平分线,又AM垂直BC,所以,三角形为等腰三角形AB单位向量和AC单位向量,是其方向上单位模长的向量,由于模长相等,按平行四边形法则加和,
解题思路:根据直角三角形的知识可求解题过程:最终答案:略
cosA=-(cosB+C)=-(cosBcosC-sinBsinC)tanBtanC=1-根号3就是说(sinBsinC)/(cosBcosC)=1-根号3所以sinBsinC=cosBcosC(1
1、∵A、B、C是三角形的内角∴sin(A+B)=sinC∴√2asin(B+π/4)=c√2sinAsin(B+π/4)=sinC(根据正弦定理)√2sinA[(√2/2)sinB+(√2/2)co
1、正弦定理:a/sinA=b/sinB=c/sinC得出:a*sinB=b*sinAasinAsinB+bcos^2A=b*sin^2A+bcos^2A=b=√2a即b/a=√2a2、余弦定理:2a
正弦定理知等价于证sinacosa+sinbcosb+sinccosc=2sinasinbsin(a+b)=2sin^2asinbcosb+2sin^2bsinacosa移项用二倍角公式等价于cos2
由正弦定理知,a/sinA=b/sinB=c/sinC∵acosA+bcosB=ccosC∴sinAcosA+sinBcosB=sinCcosC∴sin2A+sin2B=sin2C=sin(2π-2A
/>原式化为,aSinA*SinB+b(1-Sin^2A)=√2*a(原式为√2A,错的)或aSinA*SinB+b-bSin^2A=√2*a(1)由三角形正弦定理SinA/a=SinB/b=R,(R
已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE
1、由正弦定理得sinA/a=sinB/b=sinC/c=2R.则2b=a+c.cosB=(a*a+c*c-b*b)/2a*c=(3*a*a++3*c*c-2ac)/8ac.由a*a+c*c大于等于2
sinA=2sinBcosCsin(B+C)=2sinBcosCsinBcosC+cosBsinC=2sinBcosCcosBsinC-sinBcosC=0sin(C-B)=0B=C,等腰三角形.边b
根据正弦定理,原式可化为sin^2Bsin^2C+sin^2Csin^2B=2sinBsinCcosBcosC2sin^2Csin^2B=2sinBsinCcosBcosCsinBsinC=cosBc
解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略
满足b²=ac.将左边打开,右边的COSB换成COS[π-(A+C)],COS2B换成(1-2Sin²B),然后约去相同的项,再用正弦定理即可得.