在三角形ABC中,内角ABC的对边分别为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:20:03
在三角形ABC中,内角ABC的对边分别为
在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则三角形最小的内角是

由正弦定理sinA:sinB:sinC=a:b:c=2:√6:(√3+1),所以a最小,所以A最小cosA=(b²+c²-a²)/2bc=(6+4+2√3-4)/2√6(

在三角形ABC中 内角ABC的对边分别为abc 已知向量m=(sinA,cosA)向量n=(sinB,-cosB)

1,ImI=InI=1,m·n=ImI·InIcos(π/3)=1/2又根据向量点乘的坐标运算,有:m·n=sinAsinB-cosAcosB=-cos(A+B)=cosC所以cosC=1/2所以C=

用反证法证明:在三角形abc的内角中,至少有一个不大于60°

假设a,b,c都大于60,那么a+b+c>180;这与三角形内角和为180矛盾,所以至少有一个不大于60.

如图所示,在三角形ABC中,AB=AC=BD,AD=DC,求三角形ABC各内角的度数

∵AB=AC∴∠B=∠C∵AD=CD∴∠1=∠C∵AB=BD∴∠2=∠3=∠1+∠C设∠1=∠C=∠B=x则∠2=∠3=2x△ABC内角和180°∠C+∠B+∠1+∠2=180°x+x+x+2x=18

在三角形ABC中,abc分别为内角ABC的对边,且2asinA=(2b+c)sinB+(2c+b)sinC

1,2a2=2b2+bc+2c2+bc即(b2+c2-a2)/2bc=-1/2cosA=-1/2A=120°2.sinB+sin(60-B)=1解得B=30或B=120(舍去)故C=30故三角形为等腰

在三角形ABC中三个内角的度数均为整数,且角A

用枚举4角C=7角A则角C:角A=7:4=14:8=21:12=28:16=35:20=42:24=49:28=56:32=63:36=70:40=77:44=84:48180-11=169180-2

在三角形ABC中,三内角ABC的对边分别是abc,且ABC成等差数列,求三角形ABC为等边三角形.

ABC成等差数列,A+C=2B=π-B,3B=π,B=π/3,abc成等比数列,b^2=ac,由余弦定理,b^2=a^2+c^2-2ac*cosπ/3=a^2+c^2-ac=ac,a^2+c^2-2a

在三角形abc内角ABC的对边abc且a

由a+b+c=20(1)由S=(1/2)acsinB=10√3,(1/2)ac×(√3/2)=10√3,∴ac=40(2)由cosB=(a²+c²-b²)/2ac=1/2

在三角形ABC中,ab=60,sinA=cosB,三角形ABC的面积为15,求三角形的三个内角.

sinA=cosB得到A+B=90则C=90也就是说sinC=1可是如果使用余弦定理S=1/2*ab*sinC那么15=1/2*60*sinC那么15=30*sinC

在三角形ABC中,内角ABC的对边分别为abc,且满足 根号2sin^2(c/2)+cos(c/2)=根号2.

(1)、已知√2sin²(c/2)+cos(c/2)=√2,就是√2[1-cos²(c/2)]+cos(c/2)=√2,-√2cos²(c/2)+cos(c/2)=0,∵

在三角形ABC中,abc分别是内角ABC的对边,且2asinA=(2b+c)sinB+(2c+b)sinC 求A的大小

因为a:sinA=b:sinB=c:sinC所以题上等式可以化简为sinA^2=sinB^2+sinC^2+sinBsinC到这儿暂时没想到怎么做,因为剩下的条件只有sinA=-sin(B+C)代入化

在三角形ABC中,已知SinA:SinB:SinC=3:根号37:4,求三角形的最大内角

正弦定理a:sinA=b:sinB=c:sinCa:b:c=SinA:SinB:SinC=3:根号37:4b>c>a,B为最大内角余弦定理b^2=a^2+c^2-2*a*c*cosB左右同除以b^2(

在锐角△ABC中,三个内角的度数都是质数,则这样的三角形(  )

90以内的质数有:23571113171923293137414347535961677173798389质数除2以外均为奇数,三个奇数相加亦为奇数,而三角形内角和的度数为180,是偶数,所以必有一个

在△ABC中CD,CF分别是三角形ABC的内角与外角平分线,DF平行BC...

∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=

在三角形abc中 内角abc的对边分别为abc且a2=b2+c2+√3bc求角A

(1)coaA=(b^2+c^2-a^2)/(2bc)(2)C=180-A-BS=1/2absinC

在三角形ABC中,已知内角A=60°,

2√3/sin60°=AC/sinxAC=(2√3/sin60°)sinx2√3/sin60°=AB/sin(180°-60°x)AB=(2√3/sin60°)sin(180°-60°-x)AB=(2

在三角形ABC中,已知三条边的比为a:b:c=56:9:61,求三角形ABC中最大的一个内角度数

根据题意:可设a=56k,b=9k,c=61k,(k>0),则c为最大边,令c边所对的角为C,则由余弦定理得:cosC=[(56k)²+(9k)²-(61k)²]/2*(

在三角形ABC中三个内角A,B,C,成等差数列对应三边为abc且a=8b=7求三角形ABC的内切圆半径

2B=A+C,A+B+C=180A+B+C=2B+B=180B=60cosB=(a^2+c^2-b^2)/(2ac),a=8,b=7c=3或c=5,都合乎要求S△ABC=1/2ac*sinB=1/2(