在三角形abc中,∠abc,∠acb的平分线相较于点o,过点o作de平行ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:01:32
A=45`a/sinA=c/sinCc=6*根号2
有正弦定理得S=根3/4*ab.由a+b=8可得ab小于等于16(基本不等式).所以Smax=4根3.由余弦定理可得c的最小值为4.所以周长最小值为12.没分加?
设两条直角边为a,b则:a^2+b^2=25a+b=7所以a^2+b^2+2ab=4925+2ab=492ab=241/2ab=6所以△ABC的面积=6
“数理答疑团”为您解答,希望对你有所帮助.证明:BA=BC,∠ABC=∠DBE,∠ABC+∠DBC=∠DBE+∠DBC,则:∠ABD=∠CBE,BD=BE,所以:△ABD≌△CBE(SAS)手机提问的
已知∠A=50°,那么∠ACB+∠ABC=130°,又BI,CI分别平分∠ABC,∠ACB,所以1/2(∠ACB+∠ABC)=65°那么在△BIC内,∠BIC=180°-65°=115°
易证三角形ADC是等腰三角形,所以∠ADC=∠C∠ADC=∠B+1/3∠A∠A+∠B+∠C=180°所以∠A+∠B+(∠B+1/3∠A)=180°作ED//AF则∠EDA=∠EAD,所以ED=EA而B
解题思路:根据直角三角形的知识可求解题过程:最终答案:略
解题思路:在△ABC中,∠ABC=【如果您无法查看,请先安装公式显示控件】本题可先根据cosB的值求出AB的长,然后通过证△ABD和△DCE相似,得出关于AB,CD,BD,CE的比例关系式,即可得出关
线段BD、CE、DE之间存在的数量关系为DE=BD+CE,理由为:由BF、CF分别为角平分线,利用角平分线定义得到两对角相等,再由DE与BC平行,得到两对内错角相等,等量代换及等角对等边得到BD=DF
已知,CM是Rt△ABC斜边上的中线,(题中应该是∠A小于∠B)可得:CM=AM,所以,∠ACM=∠BAC.∠BCD=90°-∠B=∠BAC=∠ACM=∠DCM.因为,∠BCD+∠ACM+∠DCM=9
你的题不全啊怎么回答啊
你确定你的条件都写了吗,我咋感觉少个条件
a+b=4ab=2a^2+b^2=(a+b)^2-2ab=12=斜边的平方RT三角形ABC的外接圆的半径就是斜边的一半所以为根号3
已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE
在三角形ABC中,bsinA
解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略
由余弦定理,cosB=(c^2+a^2-b^2)/(2ca)=(c^2+a^2-ac)/(2ac)>=(2ac-ac)/(2ac)=1/2,由于余弦函数在(0,π)上是减函数,且cos(π/3)=1/
刚才的答案错了...不好意思
120.望采纳,如有不解请追问.再问:呃,过程。。。谢谢再答:在RT△ABC中,∠C=90°tanA=BC/AC=12/5∵AC²+BC²=AB²∴设AC=5x,则BC=