在三角形ABC中,S是三角形ABC的面积,满足4sin
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:41:07
结论是S=a^2(cotB+cotC)/2吧设A点到BC的距离为h(即高),垂足为DBD=h*cotBCD=h*cotCa=BC=h(cotB+cotC)S=ah/2=a^2(cotB+cotC)/2
设三角形的顶点为A、B、C,对应的边长为a、b、c.过顶点B做AC边上的垂线,设垂线长度为h,则有h=asinC.SΔABC=h*b/2=absinC/2正弦定理a/sinA=b/sinB可得b=as
利用S=1/2absinc可求得sinc,进而求得cosc=±0.5然后利用余弦定理,可求得c为根号21或根号61
(1)过P作PH⊥BC于H,则PH∥AC;Rt△ABC中,AC=6,BC=8;则AB=10.∵P为AB上动点可与A、B重合(与A重合BP为0,与B重合BP为10)但是x不能等于5.∵当x=5时,P为A
稍等再问:在打草稿?再答:化简得s=a^2-b^2-c^2+2bc由余弦定理a^2=b^2+c^2-2bccosA,另有三角形面积公式s=1/2bcsinA,带入得s=2bc(1-cosA)=1/2b
(1)由正弦定理S=1/2acsinB=4,a=2,B=45度,所以c=2√2,由余弦定理b^2=a^2+c^2-2·a·c·cosB,所以b=2;(2)由a=2,b=2,c=2√2,B=45度,三角
S△ACG:S△ABD=2:3
等腰rt三角形=>S=ab/2=1*1/2=1/2...ans
∵cosB/cosA=a/b又:根据正弦定理:a/b=sinA/sinB∴cosB/cosA=sinA/sinB∴cosAsinA=cosBsinB∴2sinAcosA=2sinBcosB∴sin2A
a²≤b²+c²-bcbc≤b²+c²-a²1/2≤(b²+c²-a²)/2bccosa≥1/2a≤60°
S=bcsinA/2=1*c*(√3/2)/2=√3所以c=4a²=b²+c²-2bccosA=1+16-2*1*4*(1/2)=13a=√13由正弦定理2R=a/sin
你的题不全啊怎么回答啊
a²+b²=c²=100(a+b)²=14²=196a²+2ab+b²=196∴ab=48∴SΔABC=1/2×ab=24希望帮助
S=a²-(b-c)²=1/2bcsinAa²-b²-c²+2bc=1/2bcsinAcosA=(b²+c²-a²)/2
已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE
正三角形再问:谢谢,具体的解答步骤是什么再答:这个...我是倒推的因为这样类似的问题答案肯定是特殊的三角形要么是直角要么是正三角形然后用正三角形带进去一试诶正好对了再试了几个正三角形不行所以就是正三角
解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略
a²-(b-c)²=a²-b²+2bc-c²=2bc-2bccosAS=1/2bcsinA∴2bc-2bccosA=1/2bcsinA4-4cosA=
答案见http://wenwen.soso.com/z/q190761440.htm