在三角形ABC中,cosb=-13发之5,cosc=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:06:00
.在三角形ABC中,若sinA=(sinB+sinC)/(cosB+cosC),判断三角形ABC的形状.:∵sinA=(sinB+sinC)/(cosB+cosC)∴sinA-(sinB+sinC)/
由(sinA+sinB)/sinC=(a+b)/c=cosA+cosB=(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ac得:a^3+b^3+a^2b+ab^2-ac^2-bc^2
化为c/a=2cosB又c/a=sinC/sinA所以sinC=2sinAcosB因为A+B+C=180sinC=sin(A+B)=sinAcosB+sinBcosA于是sinAcosB=sinBco
由正弦定理,b/sinB=c/sinC得b=sinB·c/sinC代入原式得cosC·sinB·c/sinC=c·cosBsinB·cosC=sinC·cosBsinB·cosC-sinC·cosB=
由cosA/cosB=a/b得:a/cosA=b/cosB,∵a/sinA=b/sinB相除得:tanA=tanB,∴A=B,三角形是等腰三角形.
反例:A=120,B=30,则sinA=cosB=sin60,此三角形显然不是直角三角形
正弦定理a/sinA=b/sinB=>a/b=sinA/sinBa*cosA=b*cosB=>a/b=cosB/cosA则cosB/cosA=sinA/sinB即sinAcosA-cosBsinB=0
设三角形外接圆半径为R,三角形三边为a、b、c根据正弦定理、余弦定理a=2RsinAb=2RsinBc=2RsinCcosC=(a^2+b^2-c^2)/2abcosB=(a^2+c^2-b^2)/2
1.:∵sinA=(sinB+sinC)/(cosB+cosC)∴sinA-(sinB+sinC)/(cosB+cosC)=0∴sinA-2sin[(B+C)/2]cos[(B-C)/2]/2cos[
正弦和余弦定理一起用,sinA=a/2R,sinB=b/2RsinC=c/2R,abc分别为三角线ABC角ABC对应三边,R为三角形内切圆半径.余弦定理COSB=(a*a+c*c-b*b)/(2ac)
cosB/cosC=-b/(3a+c)=-sinB/(3sinA+sinC)(由正弦定理得到此步)之后,等号左右变形-3cosBsinA-cosBsinC=cosCsinB-3cosBsinA=cos
在三角形ABC中sinA=sin(B+C)所以sinA+cosB=根2/2即sin(B+C)+cosB=根2/2由AC=b=2AB=c=3以及正弦定理a/SinA=b/SinB=c/SinC可知3*s
C=180度-(A+B),cosC=cos[180^-(A+B)]=-cos(A+B)=-cosAcosB+sinAsinB2cosAcosB+cosC=12cosAcosB-cosAcosB+sin
sinA=sin(A+B)所以有2sin(B+C)*(cosB+cosC)=sinB+sinC2(sinB*cosC+csB*sinC)*(cosB+cosC)=sinB+sinC化解得sin(B+2
因为有:sinC=sin(A+B)所以原式可以化简为:2*sin[(A+B)/2]*cos[(A+B)/2]*2*cos[(A+B)/2]*cos[(A-B)/2]=2*sin[(A+B)/2]*co
解由sinC=(sinA+sinB)/(cosA+cosB)即sinA+sinB=sinCcosA+sinCcosB即sin(B+C)+sin(A+C)=sinCcosA+sinCcosB即sinBc
cosB/cosA=b/a=sinB/sinAsinAcosB-cosAsinB=0sin(A-B)=0A=B同理,B=C所以三角形是正三角形☆⌒_⌒☆希望可以帮到you~
用正弦定理换掉,sinAcosA+sinBcosB=SinCcosCsin2A+sin2B=sin2C和差化积,2sin(A+B)cos(A-B)=2sinCcosC即cos(A-B)=cosC=-c
cosB=(a*a+c*c-b*b)/2ac带入化简c*c-b*b=0c=b等腰三角形
∵cosB/cosA=a/b又:根据正弦定理:a/b=sinA/sinB∴cosB/cosA=sinA/sinB∴cosAsinA=cosBsinB∴2sinAcosA=2sinBcosB∴sin2A