在三角形abc中,A:B:C 等于3:5:7,求最大角
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:43:17
在任意△ABC中,存在:a/sinA=b/sinB=c/sinC=2R,其中R是△ABC外接圆半径.所以a=2RsinA,b=2RsinB,c=2RsinC根据题意4RsinA=2RsinB+2Rsi
角A、C、B成等差数列,角A-角C=角C-角B,角A+角B=2角C.角C=90度.(1)c的长=根号下41.(2)面积=1/2*5*4=10
设三角形的顶点为A、B、C,对应的边长为a、b、c.过顶点B做AC边上的垂线,设垂线长度为h,则有h=asinC.SΔABC=h*b/2=absinC/2正弦定理a/sinA=b/sinB可得b=as
用余弦定理cosA=(b^2+c^2-a^2)/2bc=-1/4sinA=√15/4S=1/2*b*c*sinA=3√15/4
题目不对,a*a+c*c-b*b是什么条件?再问:ac=a*a+c*c-b*b再答:用余玄定理cosB=(a^2+c^2-b^2)/(2ac)因为a*a+c*c-b*b=ac所以cosB=(a^2+c
证明:由余弦定理cosB=(a^2+c^2-b^2)/2ac;cosA=(b^2+c^2-a^2)/2bc所以:c(cosB/b-cosA/a)=c{[(a^2+c^2-b^2)/2ac]/b-[(b
a*cosC+b*cosC+b*cosA+c*cosA+c*cosB+a*cosB再分组得(a*cosC+c*cosA)+(b*cosC+c*cosB)+(b*cosA+a*cosB)=b+a+c
设角C为x°x+x+15=180-105x=30角C=30°角B=45°
解一:排序不等式设a≥b≥c可知a(b+c-a)≤b(c+a-b)≤c(a+b-c),排序不等式:倒序小于乱序a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤ba(b+c-a)+cb(c+
^2=aca^2-b^2=ac-bc(a+b-c)(a-b)=0因为a+b>c,所以a-b=0a=b把a=b代入b^2=ac中,得到b=c,所以三角形ABC是等边三角形.A=60度,bsinB/c=s
设a=8xb=15x列一个勾股定理的方程就行了
已知三角形ABC中,AB=√3,AC=1,且B=30度;求角a与三角形面积AC/sinB=AB/sinC由AB=√3,AC=1,且B=30度,得sinC=√3/2,所以C=60°或者C=120°当C=
应该是sqrt(a-b+c)²三角形两边之和大于第三边所以a+c>ba-b+c>0|a-b+c|=a-b+ca+b>cc-a-
用正弦定理换掉,sinAcosA+sinBcosB=SinCcosCsin2A+sin2B=sin2C和差化积,2sin(A+B)cos(A-B)=2sinCcosC即cos(A-B)=cosC=-c
余弦定理:cosB=(a^2+c^2-b^2)/2ac=1/2a^2+c^2-1=ac令t=a+ct^2=a^2+c^2+2ac=1+3ac(a+c)^2>=4acac
你们应该学过正弦定理和余弦定理了吧?三角形面积S=1/2a*b*sinC=1/4(a²+b²-c²)由余弦定理,2a*b*cosC=a²+b²-c&s
a/(b+c)+b/(a+c)=1余弦定理:cosC=(a²+b²-c²)/2ab所以cos60°=(a²+b²-c²)/2ab&frac1
c^2=a62+b^2-2abcosC=a^2+b^2-aba/(b+c)+b/(a+c)=(a^2+ac+b^2+bc)/((a+c)(b+c))=(ac+bc+ab+c^2)/((a+c)(b+c
当在一个三角形中,内角和便为180度.由角A减角B=角C,得到角A等于角B加角C.由于内角和为180度,则等量代换得到2角A=180度.角A等于90度.