在三角形ABC中,3acosA=ccosB bcosC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:15:03
由正弦定理:a/sinA=b/sinB所以asinB=bsinA由题意,acosA=bcosB两式相除.得sinBcosB=sinAcosA即sin2B=sin2A所以A=B或2(A+B)=π即A=B
a/sinA=b/sinB=2R,(R为外接三角形半径)所以2RsinAcosA=2RsinBcosB所以sin2A=sin2B所以A=B或A+B=90°即这个三角形是以a、b为腰的等腰三角形或以a、
∵acosA+bcosB=ccosC∴sinAcosA+sinBcosB=sinCcosC∴sin2A+sin2B=sin2C=sin(2π-2A-2B)=-sin(2A+2B)∴0=sin2A+si
用cosA=(b^2+c^2-a^2)/2bc把所有的余弦角全还成边再化简合并同类项(a2-b2)2=c2c2又a>0,b>0,c>0两边同时开方得出a2-b2=c2得出a2=b2+c2所以ABC为直
正弦定理:sinAcosA=sinBcosB所以sinAcosA-sinBcosB=0所以sin(A-B)=0所以A-B=0所以A=B所以是等腰三角形.
令k=a/sinA=b/sinB=c/sinC所以a=ksinAb=ksinBc=ksinC代入acosA+bcosB=ccosC,并约去ksinAcosA+sinBcosB=sinCcosCsin2
正弦定理,得:sinAcosA+sinBcosB=sinCcosC,即:sin2A+sin2B=2sinCcosC,就是2sin(A+B)cos(A-B)=2sinCcosC,则2sinCcos(A-
∵bcosB+ccosC=acosA∴sinAcosA=sinBcosB+sinCcosC∴sin2A=sin2B+sin2C∴sin2A=2sin(B+C)cos(B-C)∴2sinAcosA-2s
acosA=bcosB==>a/b=cosB/cosA==>sinA/sinB=cosB/cosA==>sinAcosA=sinBcosB==>sin2A=sin2B0(1)2A=2B,A=B.C=6
∵acosA+bcosB=ccosC∴sinAcosA+sinBcosB=sinCcosC∴sin2A+sin2B=sin2C=sin(2π-2A-2B)=-sin(2A+2B)∴0=sin2A+si
(1)由余弦定理可知2accosB=a2+c2-b2;2abcosc=a2+b2-c2;代入3acosA=ccosB+bcosC;得cosA=13;再问:若a=1,cosB+cosC=3分之2倍根号3
cosC+根号2sinC=根号3cosC=根号3-根号2sinC因为sinC^2+cosC^2=1代入(根号3-根号2sinC)^2+sinC^2=1解得sinC=根号6/3
用cosA=(b^2+c^2-a^2)/2bc把所有的余弦角全还成边再化简合并同类项(a²-b²)²=c²c²又a>0,b>0,c>0两边同时开方得出
∵acosA+bcosB=ccosC∴sinAcosA+sinBcosB=sinCcosC∴sin2A+sin2B=sin2C=sin(2π-2A-2B)=-sin(2A+2B)∴0=sin2A+si
你抄少了,已知条件还有个加号吧,这样第一问答案是1/3
1.根据正弦定理,a/sinA=b/sinB=c/sinC=2R将已知条件两边除以2R(外接圆半径)=》3sinAcosA=sinCcosB+cosCsinB=sin(B+C)=sin(180-A)=
1.由已知得:sinAcosA=sinBcosB,即sin(2A)=sin(2B),可得答案2.用maple,因为a为锐角,arctan(2.0);a:=(%-Pi/4.0)*2;cos(a+Pi/3
分析:(1)利用正弦定理分别表示出cosB,cosC代入题设等式求得cosA的值.(2)利用(1)中cosA的值,可求得sinA的值,进而利用两角和公式把cosC展开,把题设中的等式代入,利用同角三角
有正弦定理可得,3sinAcosA=sinCcosB+sinBcosC=sin(B+C)=sinA即得,3cosA=1,cosA=1/3
根据正弦定理得到:asinA=bsinB=csinC=2R,则a=2RsinA,b=2RsinB,c=2RsinC,代入acosA=bcosB=ccosC中得:2RsinAcosA=2RsinBcos