在三角形abc中 ,∠abc的对边abc,且2asinb=更号3b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:46:18
在三角形abc中 ,∠abc的对边abc,且2asinb=更号3b
解三角形题在三角形ABC中、abc分别是ABC的对边、cosB/cosC=b/(2a-c)求B;求sinA+sinC的取

我用一张纸大致算了算,发现有点复杂,过程有点罗嗦,如果是填空题的话我个人认为应该还有更简单的方法,如果是简答题的话,倒是差不多.说了这么多,就想说:答案仅供参考~有正弦定理可以得到:cosB/cosC

在三角形ABC中,已知a b c分别是角ABC的对边,若a/b=cosB/cosA,判断三角形ABC形状

a/cosB=b/cosAa/b=cosB/cosA由正弦定理a/sinA=b/sinB所以a/b=sinA/sinB所以cosB/cosA=sinA/sinBsinAcosA=sinBcosB2si

在三角形ABC中,三内角ABC的对边分别是abc,且ABC成等差数列,求三角形ABC为等边三角形.

ABC成等差数列,A+C=2B=π-B,3B=π,B=π/3,abc成等比数列,b^2=ac,由余弦定理,b^2=a^2+c^2-2ac*cosπ/3=a^2+c^2-ac=ac,a^2+c^2-2a

高中三角函数:在三角形ABC中,abc分别为角ABC的对边,abc三边成等差数列,且B=45度,则cosA-cosC=

2b=a+c,sinB/b=sinA/a=sinC/c=(sinA+sinC)/a+c;求和公式.所以sinA+sinC=根号2;自己算算下面应该会了吧再问:好长时间没做高中题了,基本都忘了,能帮忙做

在三角形abc内角ABC的对边abc且a

由a+b+c=20(1)由S=(1/2)acsinB=10√3,(1/2)ac×(√3/2)=10√3,∴ac=40(2)由cosB=(a²+c²-b²)/2ac=1/2

高中三角函数题 在三角形ABC中,角A、B、C的对边为abc

1、cosBsinA/cosAsinB=(3sinc-sinb)/sinbcosbsina=cosa(3sinc-sinb)sin(a+b)=3sinccosacosa=1/3tana=2√2两向量积

在三角形abc中,已知bd、ce是三角形abc的高,试说明:三角形ade相似三角形abc

由垂直可以得到:角1+角A=角2+角A,得到角1=角2,得到三角形ABD相似三角形ACD,得到AD:AE=AB:AC,本身有角A=角A,由定理:两组对应边成比例,并且夹角相等,可得到:三角形ADE相似

在三角形ABC中 角ABC所对的边分别为abc 若c =根号3a B= 30°求∠c

余弦定理b^2=a^2+c^2-2ac*cosB=3a^2+a^2-2a*根号3a*cos30°=a^2所以a=b,为等腰三角形底角B=30°,顶角C=120°

在三角形ABC中,角ABC的对边分别为abc,B等于三分之派

cosA=(b^2+c^2-a^2)/2bc=(sinB^2+sinC^2-sinA^2)/2sinBsinC=4/5sinB=(根号3)/2sinA=3/5代入求解吧

在三角形ABC中abc分别是角ABC的对边长,S为三角形ABC的面积且4sinBsin²(4/π+2/B)+c

1.问一下,是4sinBsin²(π/4+B/2)+cos2B=1+根号3吧?化简得2sinB【1-cos(π/2+B)】+cos2B=1+根号3继续化简得sinB=1/2根号3所以B=π/

高中三角函数=0-在三角形ABC中,角ABC所对的边分别为abc.

1.由题意得(a+c)/b=pa+c=5/4a^2+2ac+c^2=25/16ac=1/4b^2ac=1/4a^2-2ac+c^2=25/16-4ac(a-c)^2=9/16a-c=3/4a=1c=1

在三角形ABC中abc分别是

你的题不全啊怎么回答啊

在三角形abc中abc的对边分别为abc 且(2c-b)cosa-acosb=0

由正弦定理可得:a/sinA=b/sinB=c/sinC=2R代入(2c-b)cosA-acosb(2sinC-sinB)cosA=sinAcosB2sinCcosA=sin(A+B)=sinCcos

在三角形ABC中,

已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE

在三角形ABC中

解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略

在三角形ABC中、∠A、B、C、所对的边分别是abc,且向量AB、AC=三分之八三角形面积 、

1.向量AB向量BC=1/2bccosA=8/3S=8/3×1/2bcsinA,推出tanA=3/4由sin²A+cos²A=1,得tan²A+1=1/cos²