在△ABC中a^2 c^2=b^2 根号2ac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 06:44:46
在△ABC中a^2 c^2=b^2 根号2ac
在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA-2cosC/cosB=2c-a/b.

(1)由正弦定理可得:a/sinA=b/sinB=c/sinC那么:(cosA-2cosC)/cosB=(2c-a)/b可化为:(cosA-2cosC)/cosB=(2sinC-sinA)/sinB即

在三角形ABC中 C=2B b、a、c成等差数列 判断三角形形状.

在任意△ABC中,存在:a/sinA=b/sinB=c/sinC=2R,其中R是△ABC外接圆半径.所以a=2RsinA,b=2RsinB,c=2RsinC根据题意4RsinA=2RsinB+2Rsi

在△ABC中 已知2B=A+C b=1 求a+c的取值范围

由正弦定理得到a/sinA=b/sinB=c/sinC因此,a+c=b(sinA+sinC)/sinB=(sinA+sinC)/sinB因为2B=A+C,A+B+C=180°B=60°A+C=120°

在三角形ABC中,求证 a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)

解一:排序不等式设a≥b≥c可知a(b+c-a)≤b(c+a-b)≤c(a+b-c),排序不等式:倒序小于乱序a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤ba(b+c-a)+cb(c+

在△ABC中,已知(a+b+c)(b+c-a)=3bc,且c=2acosB,试判断△ABC的形状.

∵在△ABC中,(c+b+a)(c+b-a)=3bc,∴c2+b2-a2=bc,可得cosA=b2+c2−a22bc=12,结合A为三角形的内角,可得A=60°.∵c=2acosB∴由正弦定理,得si

在△ABC中,内角A,B,C的对边分别是a,b,c已知B=C,2b=根号3a

1.根据正弦定理:b/sinB=c/sinC∵B=C∴b=c∵2b=√3a∴a=2b/√3余弦定理:cosA=(b^2+c^2-a^2)/2bc=[b^2+b^2-(2b/√3)^2]/2b*b=1/

在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2a+c)sinB+(2c+b)sinC.

题目写错了,条件应该是:2asinA=(2b+c)sinB+(2c+b)sinC解答如下:(1)由正弦定理得:2a²=(2b+c)b+(2c+b)c,化简得a²=b²+c

在三角形ABC中,a^2=b(b+c),求证A=2B

证明:因为a^2=b^2+c^2-2bccosA,又由题意知,a^2=b^2+bc所以c^2-2bccosA=bc则c=b(1+2cosA)所以由正弦定理c/sinC=b/sinB得sinB+2cos

在△ABC中,设向量BC=a,向量CA=b,向量AB=c且(a×b):(b×c):(c×a)=1:2:3

(1)由于BC+CA+AB=0向量,因此a+b+c=0向量,乘以a得a^2+a*b+a*c=0,因此a*b+a*c=-a^2,------------------①同理b*c+b*a=-b^2,---

在△ABC中,若2a^2=(2b+c)*b+(2c+b)*c,则A=

2a^2=(2b+c)*b+(2c+b)*c=2b^2+bc+2c^2+bc=2b^2+2bc+2c^2a^2=b^2+bc+c^2余弦定理a^2=b^2+c^2-2bccosA-2cosA=1cos

在△ABC中角A.B.C所对的边为a.b.c m=(b,a-2c)n=(cosA-2cosC,cosB

解,向量m⊥向量n∴m*n=0∴b*(cosA-2cosC)+(a-2c)*cosB=0利用正弦定理,b=sinB*2Rc=sinC*2R∴sinB*(cosA-2cosC)+(sinA-2sinC)

在△ABC中,A:B:C=1:2:3,则a:b:c等于?

好简单再答:sin30:sin60:sin90再答:1:更号3:2再答:小儿科再答:采纳吧。有点小激动再问:为什么等于Sin30:sin60:sin90?

在△ABC中,已知a-a=2(b+c),a+2b=2c-3 求△ABC的最大角的弧度数.

a^2-a=2(b+c)a^2-a-2b-2c=0,.1a+2b=2c-3a+2b-2c+3=0.21式+2式得a^2-4c+3=0c=(a^2+3)/41式-2式得a^2-a-2b-2c-(a+2b

在△ABC中,求证:a × cos²(C/2) + c × cos²(A/2) = (a + b +

分析:本题主要注意两点:①公式cos2a=2cos²a-1的应用,该公式可引申为cosa=2cos²(a/2)-1②余弦定理公式的应用.证明:∵cosa=2cos²(a/

11.在△ABC中,面积S=1/2(a-b+c)(a+b-c),则sinA=

选CS=1/2(a-b+c)(a+b-c)=1/2[a²-(b-c)²]=1/2[a²-b²-c²+2bc]=1/2[-2bccosA+2bc]又∵S

在△ABC中,已知b=1,C=2,A=60求a

由b=1,c=2,a=60°,根据余弦定理得:a2=b2+c2-2bccosa=1+4-2=根号3,则c=3.故答案为:3

A.在△ABC中,若a^2=(b+c)(b-c),则△ABC是直角三角形

因为,C选项中没交代,a,b是直角边,c是斜边,你仔细去看书,书上的a^2+b^2=c^2,很明确的交代了a,b是直角边,c是斜边.我现在假如△ABC是直角三角形,但是其中a是斜边,b,c是直角边,当

在△ABC中,已知A>B>C,且A=2C,b=4,a+c=8,求a,c

在三角行ABC中,已知∠A>∠B>∠C且∠A=2∠C,b=4,a+c=8,求a,c的长.A=2CsinB=sin(180-B)=sin(A+C)=sin3CsinA=sin2C由正弦定理得b/sinB