在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:02:21
如图,把△ABD沿AB为对称轴翻折成为△ABE,△ACD沿AC为对称轴翻折成为△ACG,延长EB、GC相交于点F,则△ABE≌△ABD,△ACD≌△ACG,所以,AD=AE=AG,∠AEB=∠AGC=
∠PCA=120°-α,60°
面积S=1/2*AB*AC*sinBAC=1/2*10*10*sqrt(2)/2=25倍根号2
/>将△ABD沿AB为对称轴翻折成为△ABE,△ACD沿AC为对称轴翻折成为△ACG,连EB,GC并延长交于F,得△ABD≌△ABE,同理△ACD≌△ACG所以AE=AD=AG,BE=BD=2,CD=
由题意得:△ABD≌△ECD,∠ADE=60°所以AD=ED,AB=EC所以△ADE为等边三角形,所以AE=AD=DE,∠DAE=60°因为∠BAD+∠CAD=∠BAC=120°∴∠BAD=60°又∠
设AB=a,AC=b,BC=cSΔABF=a*√3*a/2=√3/2a²SΔACE=b*√3*b/2=√3/2b²SΔBCD=c*√3*c/2=√3/2c²a²
1、连接AD∵AB=AC,D是BC的中点∴AD是△ABC的中垂线∵∠A=90°∴∠B=∠C=45°∴∠DAC=45°=∠C∴CD=AD=BD2、∵AN=BM,AD=BD,∠NAD=∠B∴△AND≌BM
1.∵O为BC中点∴OC=OB∵△ABC为等腰直角三角形∴OA=(1/2)BC∴OA=OB=OC2.连接OA∵△ABC为等腰直角三角形,且O为BC中点∴∠COA=∠B=45°∵AN=BMOA=OB∴△
证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD.
因为AB=ACPC=AC∴角PAC=角PCA所以∠APC=30°+1/2a
在三角形ABC中,∠BAC=60°AD是△ABC的角平分线所以∠DAC=30°又因为∠C=45°由三角形内角和为180°所以∠ADC=180°-∠DAC-∠C=180°-30°-45°=105°
解题思路:三角形解题过程:见附件最终答案:略
像这种求最小距离的一般都是用对称做解在AC上取一点K并使KA=NA那么容易证得△AKM≌△AKN(SAS)就有KM=MN再连接BK在△BMK中根据两边之和大于第三边有BM+MK>BK而只有当BMK不再
写在纸上吗?再问:要再问:会给好评的再答:再问:谢谢了再答:不客气
证明:过D引DE∥AB,交AC于E.∵AD是∠BAC的平分线,∠BAC=120°,∴∠BAD=∠CAD=60°.又∠BAD=∠EDA=60°,所以∴△ADE是正三角形,∴EA=ED=AD.①由于DE∥
AD是角平分线就可以得出∠BAD=∠DAC=30°AC=AB=BD其实只要AB=BD就可以了可以得出△ABD是以ABBD为腰的等腰三角形然后根据等腰三角形两底角相等以及三角形内角和为180°就可以求出
(1)作DE⊥AB于点E∵BC=8,BD=5∴CD=3∵AD平分∠BAC∴DE=DC=3即:D到AB的距离等于3(2)作DE⊥AB于点E∵AD平分∠BAC,DE=6∴CD=DE=6∵BD:DC=3:2
1.可过C作CD垂直于AB,交BA的延长线于D角CAD=60度,所以CD=2根号3,AD=2三角形ABC的面积=(1/2)AB*CD=6根号32.在直角三角形BCD中,BD=AD+AB=8,BD=2根
∵AB=AD∠BAD=32°∴∠ADB=∠ABD=(180º-32º)/2=74º∵AD=DC∠ADB=∠DAC+∠DCA∴∠DAC=∠DCA=∠ADB/2=37