在△ABC中,∠BAC=135度,点E.F在BC上,EM垂直平分AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:58:13
∠PCA=120°-α,60°
证明:∵∠DBC=∠DCB∴DB=DC∵AB=AC,AD=AD∴△ABD≌△ACD(SSS)∴∠BAD=∠CAD即AD平分∠BAC
证明:如图,作DF⊥AB,DE⊥AC,∵AD平分∠BAC,∴DE=DF,∠BFD=∠CED=90°,∵D是BC的中点,∴BD=CD,在Rt△BDF和Rt△CDE中,DF=DE,BD=CD∴Rt△BDF
证明:(1)AB=AC,∠BAC=90°,则:∠ABC=∠ACB=45°,∠ABE=∠ACF=135°.∠EAF=135°,则:∠EAB+∠CAF=45°;又∠EAB+∠E=∠ABC=45°.则∠E=
过点M作MD⊥AB,ME⊥AC,垂足分别为D,E因为AM平分∠BAC所以AD=AE在直角三角形BMD和CME中因为AD=AE,BM=CM所以直角三角形BMD和CME全等所以∠ABM=∠ACM再问:不对
因为AM平分角A,所以BAM角等于角CAM.又因为BM等于MC且AM等于AM,AM平分角BAC.所以三角形ABM全等于三角形AMC(SSA)所以角ABM等于角ACM.
证明:如图,过点D作DM⊥AB于M,过点D作DN⊥AC于N,则∠BMD=∠CND=90°,在△BDM和△CDN中,∠ABD=∠ACD∠BMD=∠CND=90°BD=CD,∴△BDM≌△CDN(AAS)
证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD.
证明:∵AD平分∠BAC∴∠BAD=∠CAD∵BE平分∠ABC∴∠ABE=∠CBE∵∠BED=∠BAD+∠ABE∴∠BED=∠CAD+∠CBE∵弧CD=弧CD∴∠CAD=∠CBD(同弧的圆周角相等)∴
证明:因为AB=AC所以∠abc=∠acb因为∠DBC=∠DCB所以.bd=cd在三角形abd和三角形acd中AB=ACbd=cdad=ad所以全等∠bad=∠cadAD平分∠BAC
(1)过A做AD⊥BC于D则有RT三角形ABD,RT三角形ACD在等腰RT三角形ACD(∠C=45°)中CD=3(在等腰直角三角形中直角边与斜边的比为1:1:√2)在RT三角形ABD中(AD=CD=3
△ADC中∠DAC+∠D+∠ACD=180°(1)△ABE中∠BAE+∠B+∠AEB=180°(2)AE平分∠BAC,所以∠DAC=∠BAE由(2)和(3)得∠D+∠ACD=∠AEB+∠B∠DCB=∠
http://wenwen.soso.com/z/q153195397.htm?w=%A1%F7ABC%D6%D0%A3%ACAE+%C6%BD%B7%D6%A1%CF+BAC%2C%A1%CFDCB
证明:过D引DE∥AB,交AC于E.∵AD是∠BAC的平分线,∠BAC=120°,∴∠BAD=∠CAD=60°.又∠BAD=∠EDA=60°,所以∴△ADE是正三角形,∴EA=ED=AD.①由于DE∥
AD是角平分线就可以得出∠BAD=∠DAC=30°AC=AB=BD其实只要AB=BD就可以了可以得出△ABD是以ABBD为腰的等腰三角形然后根据等腰三角形两底角相等以及三角形内角和为180°就可以求出
延长AB到E,使得BE=BD,连接DE.AE=AB+BE=AB+BD=ACAD=AD∠EAD=∠CAD所以△EAD≌△CAD对应角∠AED=∠ACDBE=BD则∠BED=∠BDE外角∠ABD=∠BED
1.可过C作CD垂直于AB,交BA的延长线于D角CAD=60度,所以CD=2根号3,AD=2三角形ABC的面积=(1/2)AB*CD=6根号32.在直角三角形BCD中,BD=AD+AB=8,BD=2根
AC上取一点E,使AE=AB∵AB+BD=ACAE+CE=AC∴BD=CE∵AB=AE,∠BAD=∠EAD,AD=AD∵△ABD≌△AED∴BD=ED∠B=∠AED∴CE=ED等腰△CED∠C=∠ED
BD=BC=>∠DBC=∠DCB∠1=∠2=>∠ABC=∠ACB=>AB=AC∠DBC=∠DCB=>△ABD≌△ACDBD=CD=>∠BAD=∠CAD=>AD平分∠BAC
如图,过O作OE⊥AB,OF⊥AC ∵OA是∠BAC的平分线,OE⊥AB,OF⊥AC ∴OE=OF 在△AEO和△AFO中,