在△ABC中,∠ACB=2∠BAC,点E在AC上,连接BE,且AE=BE,CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:13:06
角ACB=80角adc=80
设a=2k,则c=3k∵RT△ABC中,∠ACB=90°∴b=√[﹙3k)²-(2k)²]=√5×k∴sinA=a/c=2/3cosA=b/c=√5/3sinB=b/c=√5/3c
证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE
(1)∵∠ACB=∠DCA=90°,∠CAD=∠B,∴△ACB∽△DCA,∴ACDC=CBCA,∵AC=2,CB=4,∴DC=1,在Rt△ACD中,DC2+AC2=AD2,∴AD=5,答案为:AD的长
因为△ABC∽CDB所以AC/BC=BC/BD即a/b=b/BD所以BD=b^2/a供参考!
∵∠A=12∠B=13∠ACB,∴∠B=2∠A,∠ACB=3∠A,∵∠A+∠B+∠ACB=180°,∴∠A+2∠A+3∠A=180°,解得∠A=30°,∴∠ACB=90°,∵CD是△ABC的高,∴∠A
(1)角ABO=角ACO,角BCO=角CBO,三角形BCO为等腰三角.(2)5个,ef=eb+fc(3)有,beo和cfo;ef=eb+fc
证明:1、∵∠BAC=180-(∠B+∠ACB),AD平分∠BAC∴∠1=∠BAC/2=90-(∠B+∠ACB)/2∴∠ADC=∠1+∠B=90-(∠B+∠ACB)/2+∠B=90-(∠ACB-∠B)
解题思路:利用圆的知识解题过程:同学你好,请把题目传上来最终答案:略
过点C做CD⊥AB∵cosA=AD:AC=3/5设AD=3kAC=5k∴DC=4k∵∠ABC=∠ACB∴AB=AC∴BD=3k∴BC=2√5k∴sin∠ABC=DC:BC=4k:2√5k=2√5/5(
△ADC中∠DAC+∠D+∠ACD=180°(1)△ABE中∠BAE+∠B+∠AEB=180°(2)AE平分∠BAC,所以∠DAC=∠BAE由(2)和(3)得∠D+∠ACD=∠AEB+∠B∠DCB=∠
http://wenwen.soso.com/z/q153195397.htm?w=%A1%F7ABC%D6%D0%A3%ACAE+%C6%BD%B7%D6%A1%CF+BAC%2C%A1%CFDCB
(1)猜想:AB=AC+CD.证明:如图②,在AB上截取AE=AC,连接DE,∵AD为∠BAC的角平分线时,∴∠BAD=∠CAD,∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=
若△AEF为直角三角形,则有△DEF∽△CFA∴DE/FC=DF/ACxD=0.5xFDE=xD/√3∴(xD/√3)*√3=(xF-xD)(3-xF)得xF=2点F的坐标是(2,0)
连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,连A1C,则A1C的长度就是所求的最小值.通过计算可得∠A1C1P=90°又∠BC1C=45°∴∠A1C1C=135°由余弦定理可求得A
∵△ABC以C为中心旋转到△A’B‘C的位置∴△ABC≌△A’B‘C∴∠B'=∠ABC=60°BC=B'C∴⊿BCB'是等边三角形∴∠BCB'=60°∴∠A'CB=30°∴∠BDC=180-°60°-
A'B'=ABA'B'⊥AB,理由如下:延长B'A'交AB于点D∵△CA'B'是由△ABC绕顶点C旋转的到的,∠ACB=90°∴△A'B'C'≌△ABC∴A'B'=AB∠B'=∠B∵∠A+∠B=90°
由三角形BED相似于三角形BCA可得BE:BC=DE:AC即(3-CE):3=DE:4解得DE=12/7再问:第二小题呢再答:还是设正方形的边长是x,利用三角形相似得到MN:AB=CM:CA即x:5=
利用等腰三角形,直角三角形和三角和内角和定理来解得,过程如下图,
证明:取DB中点E,连接AE在直角三角形ADB中,AE上斜边DB上的中线,它等于斜边DB的一半即AE=1/2*DB=EB且有∠BAE=∠B∵∠ACB=2∠B,∠AEC=∠B+∠BAE=2∠B∴∠ACB