在△ABC中,a=2倍根号2,b=2倍根号3,C=15°,解这个三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:01:49
第一个问题:首先利用正弦定理,a÷sinA=c÷sinC,得出:sinC=½,所以,∠C=30°或者150°,有因为a为2倍的根6,大于c边边长,根据大边对大角的原则,∠C=30°因为∠A+
²=a²+c²-2accosB=8b=2√2a/sinA=b/sinBsinA=asinB/b=√3/2a
根据正弦定理sinA/sinB=a/b得sinB=√3/2所以B=60°或B=120°当B=60°时S=(1/2)ab=(1/2)*2√3*6=6√3当B=120°时S=2*[(1/2)*3*√3]=
【4根号2-(-2根号2)】×3÷2=9根号2你试着在坐标轴上标出这几个点,连接起来,以y轴为底,作高,就得出答案
根据正弦定律得2倍根号2/sinA=2倍根号3/sinBsinB=根号3/2B=60°
由a^2-b^2=根号3倍bc,且由正弦定理和sinC=2倍根号3sinB可得,c=2倍根号b,a=根号7b,再由余弦定理得cosA=根号3除以2,所以A=30度,
1利用正弦定理a/sin(π/4)=2r(r是外接圆半径)所以r=2外接圆面积=πr^2=4π2利余弦定理c^2=a^2+b^2-2abcosCc^2=4+9-12cos(2π/3)=19所以c=根1
将√3sin(½π-A)=3sin(π-A)化为√3cosA=3sinA得tanA=√3/3.∴A=30°,由cos30°=√3/2=-√3cos(π-B)可得cosB=½,所以B
利用正弦定理得b/sinB=c/sinC4√3/3/sin45度=2√2/sinC4√3/3sinC=2sinC=√3/2所以C=60度,或120度A=75度或15度
设AB=c,CD=hBD=a*sinA=a*a/c,AD=b*cosA=b*b/cBD-AD=a^2/c-b^2/c=(a+b)(a-b)/c=2根3a-b=2根2a+b=(根3/根2)*c两边同时平
1.c/sinC=a/sinA===>sinC=csinA/a=√3/2∴∠C=60º2.S△ABC=absin60º/2=3√3/2===>ab=32abcosC=a²
由已知c为斜边因为c=2b,且角C=90所以角B=30,角A=60sinA=sin60=根号3/2
arctan(3/2)〔欢迎追问,
解题思路:先用余弦定理解题过程:见附件,看看题目是否有问题最终答案:略
a/sinA=b/sinB=c/sinC=2R=2√2=>a=2RsinA,b=2RsinB,c=2RsinC2√2(sin²A-sin²C)=(a-b)sinB=>4R²
AB=AC=4根号3,BC=2根号3做AD⊥BC于D则AD是等腰三角形的高、中线、和角平分线∴BD=CD=1/2BC=根号3AD=根号(AB^2-BD^2)=根号[(4根号3)^2-(根号3)^2]=
由正弦定理.b比sinB=c比sinC可得:sinC=2分之根号3所以.C=60度或120度当C=60度时.A=75度.当C=120度时.A=15度.
∵cosc=1/3∴sinc=三分之二倍根号二∵S=absinc∴4倍根号2=3倍根号2*b*2/3根号2所以b=根号3
∵cosA=√2/2,cosB=√3/2∴A=45°,B=30°∴sin(180°-45°-30°)=sin105°=sin(60°+45°)=sin60°cos45°+cos60°sin45°=(√