在△ABC中 AD平分∠BAC交BC于点DBC的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:55:01
∵EF||BC∴∠FEC=∠DCE∵∠BAD=∠DAC,CE⊥AD∴EG=CG∴∠DEC=∠DCE∴∠DEC=∠FEC
设AD的中点为F,连接EA,E在AD的垂直平分线上,由AF=DF,∠AFE=∠DFE=90°FE=FE所以△AEF≌△DEF从而ED=EA∠EAD=∠EDA而∠EAD=∠DAC+∠CAE∠EDA=∠E
∵AD平分∠BAC∴∠BAD=∠CAD又ED⊥AD,若AD交EF于点G则∠AGE=∠AGF=90°又AG=AG根据ASA△EAG≌△FAG则EG=FG自此∵EF、AD相互平分,所以四边形AEDF是平行
证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中∵∠FAE=∠CAEAE=AE∠AEF=∠AEC,∴△FAE≌△CAE(A
相等.证明:EF垂直平分AD,则;AF=DF,(垂直平分线上的点到两端距离相等)∠DAF=∠ADF(等腰三角形的性质),且:∠DAF=∠DAC+∠CAF,∠ADF=∠B+∠BAD(三角形的一个外角等于
关键在我画的那几个角的关系相等 FE垂直平分AD 故FA=FD△AFD为等腰三角形 即∠ADF=∠DAF=∠DAC+∠CAF由因AD为∠BAC的平分线 得∠DA
证明:(1)∵EF∥AD,∴∠P=∠DAC,∠PFA=∠DAF,∵AD平分∠BAC,∴∠DAC=∠DAF,∴∠P=∠PFA,∴AP=AF,∴△APF是等腰三角形.(2)△DCH≌△BEF.证明:∵AB
⑴连接DB,DC证明:∵AD平分∠BAC,DE⊥AB,DF⊥AF,∴DE=DF,∠DAE=∠DAF又∵DG垂直平分BC∴DB=DC在Rt△BDE与Rt△CDF中DE=DFDB=DC∴Rt△BDE≌Rt
∠CAE=∠B理由如下:∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵∠EAD=∠EAC+∠CAD,∠EDA=∠B+∠BAD又∵∠BAD=∠CAD∴∠CAE=∠B
证明:连接AE∵E在AD的垂直平分线上∴AE=DE∴∠EAD=∠EDA∵∠EAD=∠EAC+∠CAD∠EDA=∠B+∠BAD又∵∠BAD=∠CAD∴∠CAE=∠B∵∠AEC=∠BEA∴△ACE∽△EB
证明:过D引DE∥AB,交AC于E.∵AD是∠BAC的平分线,∠BAC=120°,∴∠BAD=∠CAD=60°.又∠BAD=∠EDA=60°,所以∴△ADE是正三角形,∴EA=ED=AD.①由于DE∥
(1)作DE⊥AB于点E∵BC=8,BD=5∴CD=3∵AD平分∠BAC∴DE=DC=3即:D到AB的距离等于3(2)作DE⊥AB于点E∵AD平分∠BAC,DE=6∴CD=DE=6∵BD:DC=3:2
因为DE垂直ABDC垂直AC所以DE和DC分别是D到AB和AC距离D在角CAB平分线上所以D到AB和AC距离相等所以DE=CD
证明:∵EF∥AD,∴∠F=∠BAD,∠AEF=∠DAC.∵AD平分∠BAC,∴∠BAD=∠DAC,∴∠F=∠AEF,∴AE=AF,即△AEF为等腰三角形.
∵AB=AC,AD平分∠BAC,∴BD=DC,AD⊥BC,即BC=2CD,∵AF=2CD,∴AF=BC,∵CE⊥AB,AD⊥BC,∴∠AEF=∠BEC=∠ADC=90°,∵∠AFE=∠DFC,∠AEF
根据角平分线的性质,△CAE≌△GAE∴AC=AG,CE=EG连接EM,则EM是△CGB的中位线,所以EM//GB,且EM=1/2·GB∴DM:DB=EM:AB∴DM:EM=DB:AB根据角平分线的性
搁浅的时光啊我们将跨过高山越过平原穿过冰川郭宏安译悄悄地四处爬行,你就重新加工他们的土壤.你的却不的道哈哈
你这题目中的错误不是一般的多啊.AG是中线,证明如下:∵AD‖CA∴∠CAD=∠GDA∵AD平分∠BAC∴∠CAD=∠DAG∴∠DAG=∠ADG∴AG=DG同理可证AG=GE∴DG=GE∴AG是△AE
EF垂直平分AD则AE=DE∠EAD=∠ADE因∠EAD=∠EAC+∠CAD,∠ADE=∠B+∠BAD且∠CAD=∠BAD故∠EAC=∠B