在rt△,∠acb=90°,af=4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:17:28
在rt△,∠acb=90°,af=4
已知如图在Rt△ABC中∠ACB=90°CE⊥AB垂足为D 求证:∠A=∠DCB

∵CD⊥AB∴∠BCD=90°即∠B+∠BCD=90°∵∠ACB=90°∴∠A+∠B=90°∴∠A=∠BCD

在RT△ABC中,∠ACB=90°,a:c=2:3,则求∠A,∠B的正弦值和余弦值

设a=2k,则c=3k∵RT△ABC中,∠ACB=90°∴b=√[﹙3k)²-(2k)²]=√5×k∴sinA=a/c=2/3cosA=b/c=√5/3sinB=b/c=√5/3c

如图:在Rt△ACB中,∠ACB=90°,∠ABC=55°,将ABC顺时针旋转得Rt△A'CB',且使点

∵△A'CB'是由△ABC旋转得到的∴B'C=BC∴∠ABC=∠B'=∠CBB'=55°∴∠DBB'=110°∵∠B'=55°∠A'CB'=90°在四边形BDCB'中∠BDC=360°-∠A'CB'-

如图,在RT△ABC中,∠ACB=90°.(1)a=5,c=13,

=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13

如图,在RT△ABC中,∠ACB=90°,∠A=35°,以直角顶点C为旋转中心将RT△ABC旋转到RT△A'B'C'的位

因为∠A=35°,所以∠B=90-35=55度.因为BC=B'C,所以∠CB'B=∠CBB'=55度,∠B'CB=180-55-55=70度.那么∠DCB=90-70=20度,∠ABC=55度.所以∠

在Rt三角形ABC中,∠ACB=90°,∠A=35°

解题思路:在Rt△ABC中,易求得∠ABC的度数,根据旋转的性质知:∠ABC、∠B′相等,∠A、∠A′相等,BC=B′C,由此可得∠CBB′的度数,进而由三角形的外角性质求得∠BCA′的度数,即可得到

在Rt三角形ABC中,∠ACB=90°,∠A=35°求∠DC

解题思路:根据直角三角形两锐角互余求出∠ABC=55°,再根据旋转的旋转可得∠F=∠ABC,CF=CB,∠BCF=∠ECA,再根据等腰三角形两底角相等求出∠BCF,即可得解.解题过程:

已知如图在RT△ABC中,∠ACB=90°,CA=CB

证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠

1.如图,在RT△ABC中,∠ACB=90°,∠A=30°,DE是AC的垂直平分线

第1题:(1)证明:因为DE垂直平分AC,所以AD=CD,且∠ADE=∠CDE=90°,而DE是△ADE和△CDE的公共边,所以△ADE≌△CDE所以∠BCE=30°,∠CED=∠AED=60°所以∠

如图,在Rt△ABC中,∠ACB=90°,DE为中位线,∠CEF=∠A,

(1)DE为中位线→DE‖BF→∠AED=90°→DE为三角形ACD的高线——aE为中点→DE为三角形ACD的中线——b综合a,b→三角形ACD为等腰三角形,AD=CD→∠A=∠ACD∠CEF=∠A→

如图所示,Rt△ABC中,∠ACB=90°,∠A

∵M是AB的中点,∠ACB=90°∴CM=AM∴∠A=∠ACM∵折叠∴∠ACM=∠DCM∵CD⊥AB∴∠A+∠ACM+∠DCM=90°∴3∠A=90°∴∠A=30°

在Rt△ABC中,∠ACB=90°,∠A=38°,BD平分∠ABC,CE垂直BD,求∠DCE的度数.

在Rt△ABC中,∠ACB=90°,∠A=38°,所以∠B=52∠B°因为BD平分∠ABC,所以∠CBD=1/2∠B=26°因为CE垂直BD,所以∠BCE=64°又因为∠ACB=90°,所以∠DCE=

(2014•丰润区二模)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠

∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D

如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经

∵∠ACB=90°,AC=BC=1,∴AB=2,∴S扇形ABD=30•π(2)2360=π6.又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△

已知:如图所示,Rt△ABC,∠ACB=90°,将Rt△ABC绕点C顺时针旋转得Rt△A'B'C,且点B'在AB上,A'

x=3∠A证明:做CD⊥AB于D,则∠BCD=∠B'CD=∠A;所以,∠BCB'=2∠A;又∠BCB'+∠B'CA=90°,∠ACA'+∠B'CA=90°;所以,∠ACA'=2=∠A;所以,x=∠OC

如图已知△ABC和△ABD都是RT△,∠ACB=∠ADB=90°,求证A.B.C.D在同一圆上

取线段AB的中点,记为M点,故MA=MB=1/2AB(利用直角三角形斜边上的中线等于斜边的一半)得:CM=1/2AB,DM=1/2AB,所以MC=MD=MA=MB所以A.B.C.D四点共圆,圆心是点M

Rt△ABC中,∠ACB=90°,AC=b,BC=a 在三角形内接正方形

由三角形BED相似于三角形BCA可得BE:BC=DE:AC即(3-CE):3=DE:4解得DE=12/7再问:第二小题呢再答:还是设正方形的边长是x,利用三角形相似得到MN:AB=CM:CA即x:5=

在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=30°,求证AB与CD关系?(画图并证明)

AB与CD的关系是:AB²=(16/3)CD²CD²证明:如图.由题意有:CD²=AD*BD,AD=(√3)CD, B

在RT△ABC中,∠ACB=90°,AC

因为角ACB=90度所以sinB=BC/ABS三角形ABC的面积=1/2AC*BC=1/2*BC*AB*sinB因为AC*BC=1/4AB^2所以1/4AB^2=BC*sinBsin*B*(BC/AB