圆柱面曲面积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:05:16
圆柱面曲面积分
重积分和曲线积分和曲面积分是什么

加我口口吧:1194567058把这些弄懂确实很有必要,我把我知道的告诉你.二重积分是求体积的三重积分是求立体的质量的第一类曲线积分是求弧线质量的第二类曲线积分是求功的第一类曲面积分是求面质量的第二类

用Gauss计算曲面积分

记V={(x,y,z):x^2+y^2

计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2

根据圆柱面的面积公式,ds=2πRdz把x^2+y^2=R^2带入原积分得到原积分=∫ds/(x^2+y^2+z^2)=∫(0->h)2πRdz/(R^2+z^2)=2π∫(0->h)d(z/R)/[

高数曲面积分看不懂

下侧的法向量是(αz/αx,αz/αy,-1)=(x,y,-1),算算cosα与cosγ

求锥面z=根号(x^2+y^2)被圆柱面x^2+y^2=2x割下部分的曲面面积(是曲面积分),

对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y&#

曲面积分 散度定理 求流量

两种方法都可以,因为这是基于高斯公式的.你的第二种方法算的之所以不对,我估计你是在计算三重积分时把r=a代人了,具体计算如下,先求出div=2/r,因此流量=∫∫∫2dV/r,注意这时r=a不能代人,

计算曲面积分(如图),其中∑是介于平面Z=0和Z=H(H>0)之间的圆柱面x^2+y^2=R^2

设x=ρcosθ,y=ρsinθ那么x²+y²=ρ²=R²原积分就变为∫(0到2π)∫(0到H)1/(R²+z²)dzdθ=2π∫(0到H)

求解高数曲面积分问题'见图

先说三者的关系吧.在上半椭球面S1,解出Z=正的根号下.在下半椭球面S2,解出Z=负的根号下.在计算曲面积分时,无论Z正还是Z负,其中的dS都是一样的;但是被积函数中的Z,在S1与S2符号相反.所以,

求曲面积分zdS,Σ是圆柱面x^2+y^2=1,平面z=0和z=1+x所围立体的表面

圆柱面x^2+y^2=1的投影的面积0,只计算平面z=0和z=1+x即可,而平面z=0代入为0平面z=1+x的投影:x^2+y^2

计算曲面积分I=∫∫ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=R^2被x+z=

这个圆柱面在xoy上的投影为0所以dxdy=0写出圆柱面的参数方程x=Rcost,y=Rsint,0

高数,曲面积分, 

再答:再答:思路就是这样,如果有计算错误,请自己改正再问:估计算的不对,最后结果是2/15再答:那自己算一遍吧再问:再问:这个怎么算?再答:r=sint再答:采纳啊亲,赚分不易

高数题,求曲面积分 

答案是4πR^2,把积分区域的函数带入,就是一个被积函数为常数的积分了,乘以积分曲面的面积就好再问:你的答案不对再答:答案是多少再问:4兀再答:你把R等于1就是答案了,我想的是半径为R,是我疏忽了再问

第二类曲面积分  

你的做法没问题.可以把曲面方程代入曲面积分的被积函数,但是化为二重积分后不能再代入了再问:恩,麻烦再帮我看看这个问题http://zhidao.baidu.com/question/445417783

二重积分,三重积分,第一型曲面积分

这是大学理工科的高等数学.一般人真答不上来.二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(

高数曲面积分 

分两种情况.再答:再答:再答:图片顺序反了……再答:再答:再答:奥高公式就是高斯公式。