圆方程如何转化成参数方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:10:31
首先消去参数α,那么有xOy坐标下的标准形式:x²/16+(y-4)²/16=1再把x=ρcosθ,y=ρsinθ代入整理就有极坐标方程:ρ=8sinθ
用y除以x得到y/x=t,从而解出t=y/x,然后将t带入x的表达式整理得即可,由于书写数学表达式不方便,只能帮你到这了
首先圆的方程是(x-a)^2+(y-b)^2=r^2把r^2除过去(x-a)^2/r^2+(y-b)^2/r^2=1两个数的平方和等于1,所以可以设(x-a)/r=sin&(y-b)/r=cos&整理
书上有,东西比较多.数学水平也不是你问问就会的啊..比如椭圆和双曲线还有圆,参数方程,直线的参数方程,抛物线的参数方程(比如平抛轨迹就是关于t的参数方程),很多很多.可以直接在baidu上搜索.
没啥区别,x^2/b^2+y^2/a^2=1,都可写成参数方程:x=bcosty=asint
两式相除得x/y=-k/4k=-4x/y代入y=4/(k^2+4)得y=4/(16x^2/y^2+4)化简得4x^2+y^2-y=0
解题思路:参数方程解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph
令其中一个未知数等于t,将t看做已知数,然后解剩下两个未知数的方程组,用t表示结果,得到参数方程
解题思路:同学你好,本题要知道直角坐标系与极坐标系互化方程,第一题要注意夹角为60度,但斜率可能两个,一正一负,不要丢了解题过程:
等于一再答:利用sin方cos方之和再答:利用sin方cos方之和再答:再答:因为发不出去再答:所以截屏了再答:还有去参数的方法再答:就可以了其实很简单的再答:我给你举个例子再问:是所有的都能这么做吗
将参数方程改写成极坐标方程,r=a(1+Cos[t]),(零<=t<2Pi)面积=积分[(1/2)r^2dt]=(1/2)a^2(t-Sin[t])=(a^2/2)[2Pi-零-(
可以这么来化:2x/a=t+1/t(3)2y/b=t-1/t(4)两式平方,再相减,得:4x^2/a^2-4y^2/b^2=4即:x^2/a^2-y^2/b^2=1
[1]首先极坐标是个坐标,不是方程.不能说极坐标是参数方程.曲线的直角坐标方程、极坐标方程及参数方程只是曲线的3种表达方式,可以相互转化.[2]参数方程转化为曲线方程就是找到x、y之间的关系,消去参数
再答:发过去了,你先看一看,不懂可以问我再答:求好评!再问:谢谢亲再问:再问:大神求救
x=(k+1)/(k+2)===>k=(1-2x)/(x-1)将这代y=(2k+1)/(k+2)===>8x-y-1=0
解题思路:把x=1+2t化成t=x-1/2,再代入y=at中,可得y=a(x-1)/2,即2y=ax-a,则ax-2y-a=0.解题过程:
是y=五分之二倍根号五tx=五分之根号五t-1/2方法很多我个人喜欢做法是先变形y=2(x+1/2)就设y=at(x+1/2)=(1/2)bt再根据定义t前面的系数分别是直线的倾斜角的正弦和余弦a^2
x=rcosqy=rsinq其中r=√(x^2+y^2q=arccosx/√(x^2+y^2
(2)代入(1)得x=1+y.
y=3x+2转化成参数方程1)在直线上任取一点,比如:A(0,2)x0=0,y0=22)设直线的倾斜角为α,则tanα=3∴α为锐角∴sinα/cosα=3,sinα=3cosα代入sin²