圆心在A(2,3分之π),半径为2的圆的方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:18:31
设圆心坐标为(x,0),则(x-2)2+9=25 ∴x=-2或6∴圆的方程是(x+2)2+y2=25或(x-6)2+y2=25
圆的标准方程为(x-a)^2+(y-2/π)^2=a^2所以x=acost+ay=asint+2/π(t为参数)
圆的一般极坐标方程为p^2=2pmcos(&-n)+m^2=r^2圆心(m,n),r半径直接代入就可以了最后方程是p^2-2pcos(&-π/4)=0再问:这都没学呢!能给常规解法吗?再答:貌似这就是
圆心在(a,3π/2),半径为a所以圆心在y轴负半轴上,直径为2a,并与x轴相切设(ρ,θ)是圆上任一点极坐标则由弦切角定理及三角函数得ρ=2asin(θ-π)即圆的极坐标方程为ρ=-2asinθ
设圆心为(a,0)(a<0),则r=|a+1×0|12+12=2,解得a=-2.圆的方程是(x+2)2+y2=2.故答案为:(x+2)2+y2=2.
(1)(x-1)^2+(-2x-2-1)^2=(x+3)^2+(-2x-2-5)^2(2)有两个这样的圆x^2+(y-4)^2=9x^2+(y+2)^2=9
(a)L:y=mx+3倍根号2圆C:x^2+y^2=9画图,设L与圆C交于B、C.TAN
极坐标方程与直角坐标方程转换公式x=r*cosθy=r*sinθ上述圆直角坐标方程很easy,(x-1)^2+(y-π/2)^2=1把上边转换公式带进圆的直角坐标方程再一化简,不就是了吗?
依题意,得O(0,0),|OA|=(0+3)2+(0−1)2=4=2,∴R-r=3-1=2=|OA|,∴两圆内切.
正方形abcd边长为20以a为圆心ad为半径在正方形内做四分之一的圆,以c为圆心cd为半径在正方形内做四分之一的圆,求该两弧与正方形内接圆相交的面积
根据题意得点A到点O的距离是3+1=2,即两圆的圆心距是2,所以半径与圆心距的关系是3-1=2,根据圆心距与半径之间的数量关系可知⊙O1与⊙O2的位置关系是内切.故选B.
显然M和N是线段AB的垂直平分线所以D在垂直平分线上所以AD=BD所以AC+BC=AC+CD+BD=AC+CD+AD=10所以三角形ABC周长=AB+AC+BC=17
套用圆的一般方程即可得到:(x-8)^2+(y-π/3)^2=25
设圆心的极坐标为(ρ1,θ1),半径为r.则圆的极坐标方程是:ρ^2-2(ρ1)ρcos(θ-θ1)+(ρ1)^2-r^2=0此方程为ρ^2-2aρcos(θ-π/2)+a^2-a^2=0ρ^2-2a
p=-2asinx(x为度数)
(x-3)^2+(y-π)^2=9所以x^2-6x+9+y^2-2πy+π^2=9x^2+y^2-6x-2πy+π^2=0由x^2+y^2=ρ^2,x=ρcosθ,y=ρsinθ得ρ^2-6ρcosθ
如图所示,∠OQP=θ,∠QPO=90°.∴ρ=2asinθ.故选:D.
圆心在(a,π/2),直角坐标(0,a)∵半径为a∴圆的直角坐标方程为x²+(y-a)²=a²展开:x²+y²-2ax=0x²+y²
化为直角坐标方程求圆心坐标x=2*1/2=1y=2*√3/2=√3圆心(1,√3),r=3圆为(x-1)²+(y-√3)²=9再化x²+y²-2(x+√3y)=
1.p=根号2*(cosA+sinA),A为倾斜角2.p=-2a*sinA,A为倾斜角3.要化成最简形式的极坐标化直角坐标会吧?写出那两个圆的直角坐标方程,然后x=p*cosA,y=p*sinA,你自