圆心在(a.π 2),半径为a的圆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:55:36
设圆心的极坐标为(ρ1,θ1),半径为r.则圆的极坐标方程是:ρ^2-2(ρ1)ρcos(θ-θ1)+(ρ1)^2-r^2=0此方程为ρ^2-2aρcos(θ-π/2)+a^2-a^2=0
圆的标准方程为(x-a)^2+(y-2/π)^2=a^2所以x=acost+ay=asint+2/π(t为参数)
分别计算A、B、C三点到圆心(即原点)的距离|OA|=根号下(3^2+4^2)=5,在圆上|OB|=根号下(3^2+3^2)=根号185,在圆外
圆的一般极坐标方程为p^2=2pmcos(&-n)+m^2=r^2圆心(m,n),r半径直接代入就可以了最后方程是p^2-2pcos(&-π/4)=0再问:这都没学呢!能给常规解法吗?再答:貌似这就是
极坐标方程与直角坐标方程转换公式x=r*cosθy=r*sinθ上述圆直角坐标方程很easy,(x-1)^2+(y-π/2)^2=1把上边转换公式带进圆的直角坐标方程再一化简,不就是了吗?
依题意,得O(0,0),|OA|=(0+3)2+(0−1)2=4=2,∴R-r=3-1=2=|OA|,∴两圆内切.
1.CE与圆有三种位置关系,相交,相切和相离2.当直线CE与与圆相切时,∵C为直线BC与Y轴的交点∴C(0,4),设直线CE的斜率为k那么直线CE的方程为y-4=kx即y=kx+4圆A的方程为x
圆的一般极坐标方程为p^2=2pmcos(&-n)+m^2=r^2圆心(m,n),r半径直接代入就可以了最后方程是p^2-2pcos(&-π/4)=0
可以进行坐标转换啊,极坐标(ρ,θ)与直角坐标换算为x=ρcosθ,y=ρsinθ则(1)圆的直角坐标方程为(x-√2/2)^2+(y-√2/2)^2=1即x^2+y^2-√2(x+y)=0转化为ρ^
两种坐标互化公式:(1)x=ρcosθ,y=ρsinθ;(2)ρ²=x²+y²,tanθ=y/x.1.先将圆心的极坐标化为直角坐标,得圆心坐标为(
套用圆的一般方程即可得到:(x-8)^2+(y-π/3)^2=25
设圆心的极坐标为(ρ1,θ1),半径为r.则圆的极坐标方程是:ρ^2-2(ρ1)ρcos(θ-θ1)+(ρ1)^2-r^2=0此方程为ρ^2-2aρcos(θ-π/2)+a^2-a^2=0ρ^2-2a
p=-2asinx(x为度数)
直角坐标方程为x^2+(y-a)^2=a^2=>x^2+y^2-2ay+a^2=a^2=>x^2+y^2=2ay∵y=ρsinθx^2+y^2=ρ^2∴ρ^2=2aρsinθ=>ρ=2asinθ
(x-3)^2+(y-π)^2=9所以x^2-6x+9+y^2-2πy+π^2=9x^2+y^2-6x-2πy+π^2=0由x^2+y^2=ρ^2,x=ρcosθ,y=ρsinθ得ρ^2-6ρcosθ
做一个坐标系,以坐标系原点(0,0)为圆心,半径2做圆,每一个象限内的弧长都为3.14厘米(前提是π取3.14)推理如下:圆的周长=2π*2=4π=4*3.14(厘米)弧长3.14厘米是周长的1/4,
如图所示,∠OQP=θ,∠QPO=90°.∴ρ=2asinθ.故选:D.
圆心在(a,π/2),直角坐标(0,a)∵半径为a∴圆的直角坐标方程为x²+(y-a)²=a²展开:x²+y²-2ax=0x²+y²
1.p=根号2*(cosA+sinA),A为倾斜角2.p=-2a*sinA,A为倾斜角3.要化成最简形式的极坐标化直角坐标会吧?写出那两个圆的直角坐标方程,然后x=p*cosA,y=p*sinA,你自