圆内接正n边形的边心距是2根号3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:41:58
怎么会呢,分子分母同时有理化,得出的式子可求极限啊!=======当n趋于无穷大时lim[√(n+1)-√n]/[√(n+2)-√n]=lim[(n+1)-n][√(n+2)+√n]/{[(n+2)-
不管正整数x等于几,n次根号x都等于1,所以n次根号2+n次根号3+...+n次根号101的极限等于100啊~
分子分母同乘(根号M+根号N)化简得原式等于M+N+根号M*根号N再计算(根号M+根号N)^2=m+n+2根号MN=9所以M+N=7所以原式等于8
(3根号m+2根号n)/(2根号m-根号n)=[(3根号m+2根号n)*(2根号m+根号n)]/(4m-n)=[6m+2n+7根号(mn)]/(4m-n)根号m+根号n的倒数是(根号m-根号n)/((
(M-N/根号M-根号N)+(M+4N-4根号MN/根号M-2N)=(根号M+根号N)+(根号M-2根号N)=2根号M-根号N=2根号3/3-根号3/9=根号3/3
先取对数,求极限,结果再求指数函数lim(n->∞)n*ln[√(n²+n)﹣√(n²-n)]=lim(n->∞)n*ln{2n/[√(n²+n)+√(n²-n
根号24n=根号(4*6)n4=2^2所以4能从根号里提出所以根号24n=2×根号6n
a(n)=[(n+2)^(1/2)-(n+1)^(1/2)]-[(n+1)^(1/2)-n^(1/2)],s(n)=a(1)+a(2)+...+a(n-1)+a(n)=[3^(1/2)-2^(1/2)
lim(n->∞)narctan(nx)/√(n^2+n)=lim(n->∞)arctan(nx)/√(1+1/n)=π/2
N次根号的意思是10的1/N次方.所以你说的N等于1时,就是10的1次方就等于10,所以,N次根号下的10的N次方就是10的1/N*N次方=10的1次方=10N次根号下10的2N次方就是10的1/N*
√m+√n=3√mn=1由立方差公式有(m√m-n√n)/(√m-√n)=m+√mn+n=(√m+√n)^2-√mn=9-1=8
√(21-2n)+√(7n-26)是整数所以21-2n和7n-26为平方数小于21的平方数为1、4、9、162n,为偶数,故舍掉偶数的平方数值剩下1、9相应的n值为10、6把10代入7n-26=44不
因为n是自然数即n>0且1/(根号n+1)-(根号n)0所以1/(根号n+1)-(根号n)
级数Σ√(n-1)/(n^2+n)^(1/4)是发散的.事实上,因 √(n-1)/(n^2+n)^(1/4)=√(1-1/n)/(1+1/n^2)^(1/4)→1≠0(n→∞),据级数收敛的必要
1/M=1/[√(n+4)-√(n+3)]=[√(n+4)+√(n+3)]/[√(n+4)+√(n+3)][√(n+4)-√(n+3)]=[√(n+4)+√(n+3)]/[(n+4)-(n+3)]=√
a=根号n+根号n+2与b=2√n+1a,b都是正数.∵a²-b²=[√n+√(n+2)]²-4(n+1)=n+n+2+2√(n²+2n)-4n-4=2√(n&
根号2n+根号3n/根号下2n-根号下3n=[根号(2/3)^n+1]/[根号(2/3)^n-1]n趋向无穷,根号(2/3)^n趋于0lim...=1/(-1)=-1
m=√(n+2)+√(4-2n)+√(-n²)∵-n²≥0∴n=0∴m=√2+√4=2+√2
(n+1)/n总是大于1那么你可以想像下它的图像应该在y=x的上方那么必然不可能收敛啊只要对于每一项都是正数的多项式在n到正无穷的时候那一项的极限不是0那么肯定不可能收敛