圆内接四边形ABCD中,对角线AC⊥BD,垂足为P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:18:04
证明:∵AD//BC∴∠DAE=∠BCF∵ED//BF∴∠DEA=∠BFC∵AF=CE∴AE=CF∴△ADE≌△CBF(角边角)∴AD=BC∵AD//BC∴四边形ABCD是平行四边形(有一组对边平行且
如图,以AD为边作正△ADE,∵△ABC也是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∵∠BAD=∠BAC+∠CAD,∠CAE=∠DAE+∠CAD,∴∠BAD=∠CAE,在△A
∠A:∠B=5:7∠B-∠A=∠C∠D-∠C=80∠A+∠B+∠C+∠D=360设∠A=5x,则∠B=7x,∠C=2x,∠D=80+2x5x+7x+2x+2x+80=360x=35/2所以∠A=5x=
易证:AO=OC,BO=OD(平行四边形对角线互相平分)∵在△ACD中,EO为中位线∴EO=1/2*BC∵EO=4∴BC=8同理:CD=2OF=2*3=6∴C平行四边形ABCD=2(BC+CD)=2*
由AO=BO=CO=DO,AC⊥BD根据三角形全等,可得AB=CD,AD=BC,所以四边形ABCD是平行四边形(两组对边分别相等)又因为AC=BD,AC⊥BD,所以平行四边形ABCD是正方形(对角线垂
作OE⊥AB于点E,再作直径BF,连接AF,FD则OE是△ABF的中位线∴OE=1/2AF∵BF是直径∴∠BDF=90°∴AC‖FD∴弧AF=弧CD∴AF=CD=4∴OE=1/2AF=2
=S△ADO+S△ABC=1/2ACOD+1/2ACOB=1/2AC(OD+OB)=1/2*14*8=56
B证明:∵E,F,G,H分别是中点∴EF是△ABC的中位线,GH是△ACD的中位线∴EF‖AC,EF=AC/2,HG‖AC,HG=AC/2∴EF‖HG,EH=AG/2∴四边形EFGH是平行四边形同理可
证明:∵对角线BD平分∠ABC,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠3=∠1,∴∠3=∠2,∴DC=BC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.
1、不相等,在BC上取BE=AB,连接DEAB=BE,BD共用,BD平分∠ABC,△ABD≌△EBD,∠A=∠BED而∠BED=∠CED+∠C,因此∠A>∠C2、∠A大3、∠A+∠C=180度△
因为对角线CA⊥AB,BD⊥CD,所以三角形CDA和三角形CDB为直角三角形CD为两个三角形的斜边因为直角三角形的顶点到斜边中点的距离相等,设中点为O则OC=OA=OB=OD所以A、B、C、D四点在以
是菱形.∵AC平分∠DAB,∴∠DAC=∠BAC,∵DC‖AB,∴∠DCA=∠BAC=∠DAC,(两直线平行,内错角相等)∴AD=DC(等角对等边)∴平行四边形ABCD是菱形(有一组邻边相等的平行四边
∵ABCD为圆内接四边形【已知】∴∠BAC=∠BDC,∠CBD=∠CAD【相同圆弧所对的同侧圆圆周角相等】即:∠BAF=∠CDE,∠CBE=∠FAD又:∠ADF=∠CDE,∠ABF=∠CBE【已知】∴
过A作AE//BC交BD于点E,则有三角形AOE全等于三角形COBAE=BC,OE=OBDO-BO=DE在三角形ADE中,AD-AE
设对角线AC,BD交于点O.由已知得△ABC=△ADC=△ABD=△CBD(这里以△表示三角形的面积)即△AOB+△BOC=△AOD+△COD=△AOB+△AOD=△BOC+△COD所以△AOB=△C
结论:60度角所对的两边之和大于其中一条对角线.已知:四边形ABCD,AC=BD,AC、BD交于点O,角AOD=60度.求证:AD+BC>BD.证明:分别取AB、BC、CD、AD、BD的中点E、F、G
如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,(1)求证:△AOE≌△COF;(2)若AM:DM=2:3,△O
OH=1/2BC=1/2CD=2因为AC⊥BD所以可以确定AC或者BD为圆的一条直径,若AC为直径那么OH=1/2BC因为AC为BD的垂直平分线所以CD=BC同理弱BD为直径那么OH=1/2AD=1/
证明:∵▱ABCD中,对角线AC交BD于点O,∴OB=OD,又∵四边形AODE是平行四边形,∴AE∥OD且AE=OD,∴AE∥OB且AE=OB,∴四边形ABOE是平行四边形,同理可证,四边形DCOE也