圆o过点bc 圆心o在等腰直角三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 16:58:23
分别计算A、B、C三点到圆心(即原点)的距离|OA|=根号下(3^2+4^2)=5,在圆上|OB|=根号下(3^2+3^2)=根号185,在圆外
∠OAC=30°,OC=2三角形OAC的面积=2根号3阴影部分面积=四边形面积(4根号3)-扇形面积(1/3圆面积)BE=6-4=2再问:∠OAC为什么是30°不要用30°的定理,怎么做再答:因为OD
(1)线段AB长度的最小值为4,理由如下:连接OP,因为AB切⊙O于P,所以OP⊥AB,取AB的中点C,则AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4;(2)设存在符合条件的点Q,
连接CD∵∠ACB=90°,AC为⊙O直径,∴EC为⊙O切线,且∠ADC=90°;∵ED切⊙O于点D,∴EC=ED,∴∠ECD=∠EDC;∵∠B+∠ECD=∠BDE+∠EDC=90°,∴∠B=∠BDE
过A作AD垂直于BC,由AD必过圆心O,因为三角形ABC为等腰直角三角形,所以AD=1/2BC=3,又因为OA=1,所以OD=2,所以圆的半径平方=3的平方-2的平方,计算可得:圆的半径=根号5.
证明:∵三角形ABC是等腰三角形,∴∠B=∠C,又∵O是BC中点,又是圆心,∵AB,AC,DE均为切线,∴∠BDO=∠ODE∠DEO=∠OEC∴∠BOD+∠DOE+∠COE=180度=∠OED+∠DO
(1)证明:在等腰梯形ABCD中,AD∥BC.∴AB=DC,∠B=∠C,∵OE=OC,∴∠OEC=∠C,∴∠B=∠OEC,∴OE∥AB;(2)证明:连接OF,∵⊙O与AB切于点F,∴OF⊥AB,∵EH
设AP=X时,圆O与CD切于FOP=OF=4-AP/2=4-0.5*X;OP=BP/2=0.5√(X²+3²);4-0.5*X=0.5√(X²+3²);X=55
(1)△OFC是能成为等腰直角三角形,①当F为BC的中点时,∵O点为AC的中点,∴OF∥AB,∴CF=OF=12AB=52,∵AB=BC=5,∴BF=52,②当B与F重合时,∵OF=OC=522,∴B
∵AB是圆的切线,∴OD⊥AB,即∠BDO=90°,又∵△ABC是等腰直角三角形,∴∠B=45°,∴∠BOD=45°,∴∠MND=12∠BOD=22.5°.故答案是:22.5.
连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=12AC=2;∵∠DOB=45°,∴∠MND
连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=12AC=2;∵∠DOB=45°,∴∠MND
貌似8个每个象限2个这2个都关于该象限角平分线轴对称哦~TOBEHONEST,问网友还不如问老师......
根据直线y=kx-3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(-10,0),求出OB的长,再利用勾股定理求出BD,即可得出
当k变化是直线y=k(x-3)+4也变化,但是当x=3时,k系数为0,y为恒定值4.所以y=k(x-3)+4必过恒定点D(3,4).
三角形AFC和三角形ACB有共同的角A同时角ACB和角CBA所对的圆弧是相等的(对圆A来说线AC和线AD是半径故相等,对圆O来说他们是弦,弦相等即狐相等),所以这两个角也相等.相似可证.有相似三角形性
有两个,其实只要还是以O为圆心,原来的两倍为半径做圆,和l相交的两个点就是所求的点了.因为AOC是30度,也就是圆心角三十度,OA=OC.三角形的两个底角都是75度,ACO也就是75度,因为P是在同一
两个这样的等腰直角三角形拼起来是一个边长为半径的正方形,所以半径的平方等于10,圆的面积等于半径的平方乘圆周率,等于10π≈31.4平方厘米.