圆O过点B,C,圆心O在等腰直角△ABC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:40:44
连结OP∴∠OCP=∠OPC=∠DCP∴OP//CD∵CD⊥AB∴OP⊥AB∴∴P是弧AB中点
证明:1、∵PA、PB切圆O于A、B∴PA=PB∵DE切圆O于C∴AD=CD,BE=CE∴DE=AD+BE∴△ADE的周长=PD+DE+PE=PD+AD+BE+PE=PA+PB=2PA∴△ADE的周长
分别计算A、B、C三点到圆心(即原点)的距离|OA|=根号下(3^2+4^2)=5,在圆上|OB|=根号下(3^2+3^2)=根号185,在圆外
设圆心(x,2/x),则A(x,0),B(0,2/x)SAOB=x*2/x*1/2=1
过A作AD垂直于BC,由AD必过圆心O,因为三角形ABC为等腰直角三角形,所以AD=1/2BC=3,又因为OA=1,所以OD=2,所以圆的半径平方=3的平方-2的平方,计算可得:圆的半径=根号5.
∠BOD=∠AOC+2∠DPB证明:连接AD所以∠BOD=2∠BAD(同弧所对圆心角是圆周角的二倍)同理∠AOC=2∠ADC而∠BAD=∠ADC+∠DPB(外角等于不相邻两内角和)所以∠BOD=2∠B
(1)证明:在等腰梯形ABCD中,AD∥BC.∴AB=DC,∠B=∠C,∵OE=OC,∴∠OEC=∠C,∴∠B=∠OEC,∴OE∥AB;(2)证明:连接OF,∵⊙O与AB切于点F,∴OF⊥AB,∵EH
存在只需要满足众多条件中的一个即可再问:那个条件?能不能举个例子再答:嗯哼你的题我看不清呢只是我们当时期中考试的时候全班除了第一名之外全部都死在这个提上了我们班主任告诉我们存在就只满足众多条件中的一个
因为AB是圆O的直径,BC是圆O的切线,所以BC垂直于AB,角ABC=90度,困为AB是圆O的直径,点D在圆O上,所以角ADB是直角,BD垂直于AC,又因为AD=CD,所以BD是AC的垂直平分线,所以
连接BD.BD垂直于AD,AD=CD,所以BD为三角形ABC的中线、高.又BC垂直于AB,所以ABC为等腰直角三角形.角DAB=45,则角ABD=90-45=45度
根据直线y=kx-3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(-10,0),求出OB的长,再利用勾股定理求出BD,即可得出
∠BOD=∠AOC+2∠DPB证明:连接AD所以∠BOD=2∠BAD(同弧所对圆心角是圆周角的二倍)同理∠AOC=2∠ADC而∠BAD=∠ADC+∠DPB(外角等于不相邻两内角和)所以∠BOD=2∠B
当k变化是直线y=k(x-3)+4也变化,但是当x=3时,k系数为0,y为恒定值4.所以y=k(x-3)+4必过恒定点D(3,4).
作OM⊥BC于点M.∵AD=13,OD=5,∴AO=8∵∠DAC=30°,∴OM=4.在Rt△OCM中,OM=4,OC=5,∴MC=3∴BC=2MC=6.
这位同学你的题目表的有些小问题,我现在重新叙述一遍题干,你看看是不是和你要表达的意思一样:△ABC内接于圆O,AB是圆O的直径,点D在圆O上,圆O过C点的切线交AD的延长线于点E,且AE垂直于此切线,
本题中应该漏掉了条件:------------------CE垂直AE.(1)证明:连接OC.∵CE为切线.∴OC⊥CE;又AE⊥CE.∴OC∥AE,则∠OCA=∠CAD;又OC=OA,∠OCA=∠C
(1)略(2)BE=BG+EG=BD+EF,理由是:设FD与AE交于点O,过O做OG⊥DE,∵∠AED=∠ADF,且∠ADF=∠AED∴∠AED=∠AED∴FE=EG又∵弧AB=弧CD∴∠DAB=∠A
(1)连接AC因弧AB=弧CD,则AB=CD,则∠ADB=∠DAC(相等弦对应圆心角相等)因∠ADB=∠DAC,∠DBA=∠ACD=90度(直径所对角为90度),AD=AD,则三角形DBA全等三角形A
有两个,其实只要还是以O为圆心,原来的两倍为半径做圆,和l相交的两个点就是所求的点了.因为AOC是30度,也就是圆心角三十度,OA=OC.三角形的两个底角都是75度,ACO也就是75度,因为P是在同一
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60