圆O过点B C 圆心O在等腰三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 16:52:25
圆O过点B C 圆心O在等腰三角形
在三角形ABC中,角C=90度,AC+BC=8,点O是斜边AB上一点,以O为圆心的圆O分别与AC、BC相切于D、E.

(1)∵AC=2∴BC=3连接OD,OE,设圆O的半径为n故ODCE为正方形∴OD=CE=OE=n,∠OEB=90°=∠C∵∠C=∠OEB,∠B=∠B∴△ACB∽△OEB∴AC/OE=BC/EB∴2/

在△ABC中,AB=AC,O是AB上一点,以O为圆心的圆经过点A,交AB于点F,与BC相切于点E.点D为BC的中点,连结

1、以O为圆心的圆经过点A,交AB于点F,与BC相切于点E.即BC是圆o的切线,所以OE⊥BC又,AB=AC,点D是BC的中点,所以AD⊥BC所以AD//OE2、∠B=30°,则∠BOE=60°又,O

在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆O,点P是圆O在第一象限中的一个动点,过点P作圆O的切

(1)线段AB长度的最小值为4,理由如下:连接OP,因为AB切⊙O于P,所以OP⊥AB,取AB的中点C,则AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4;(2)设存在符合条件的点Q,

如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半

连OM,ON,如图∵MD,MF与⊙O相切,∴∠1=∠2,同理得∠3=∠4,而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC∴∠2+∠3+∠B=180°;而∠1+∠MOB+∠B=180°,∴∠

如图,圆O过点B,C,圆心O在等腰直角三角形ABC的内部,角BAC=90度,OA=1,BC=6,求圆O的半径.

过A作AD垂直于BC,由AD必过圆心O,因为三角形ABC为等腰直角三角形,所以AD=1/2BC=3,又因为OA=1,所以OD=2,所以圆的半径平方=3的平方-2的平方,计算可得:圆的半径=根号5.

如图 ,已知等腰三角形ABC中.B=AC=10cm,BC=12cm,点O在BC上,以O为圆心作圆,和两腰都相切,求圆O的

连接AO,设圆O半径为R∵O到AB,AC的距离相等∴AO平分∠BAC,AO⊥BC根据勾股定理AO=8∴S△ABC=1/2*12*8=48∵S△ABO=S△ACO=1/2AB*R=5R∴48=2*5R∴

在等腰三角形abc中,底边BC=6,以BC的中点O为圆心,做切于两腰的圆,P为圆上一动点,过点P的切线

证明:∵三角形ABC是等腰三角形,∴∠B=∠C,又∵O是BC中点,又是圆心,∵AB,AC,DE均为切线,∴∠BDO=∠ODE∠DEO=∠OEC∴∠BOD+∠DOE+∠COE=180度=∠OED+∠DO

如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB

(1)证明:在等腰梯形ABCD中,AD∥BC.∴AB=DC,∠B=∠C,∵OE=OC,∴∠OEC=∠C,∴∠B=∠OEC,∴OE∥AB;(2)证明:连接OF,∵⊙O与AB切于点F,∴OF⊥AB,∵EH

Ab是圆O的直径,Bc是弦,角ABC=30度,过圆心O作OD垂直BC,交弧BC于点D,连接DC.判定四边形ACDO的形状

ACDO是菱形,证明如下:∵AB是圆O的直径,BC是弦∴∠ACB=90°又:∠ABC=30∴AC=1/2AB=AO=OC∴△AOC为等边三角形∴∠AOC=60°又:OD⊥BC∴OD∥AC∴∠BOD=∠

在三角形ABC中,角C等于90°,AC=3,BC=4,O为BC边上一点,以O为圆心OB为半径做半圆,与AB边交于点D,过

连OE1)三角形BDE为直角三角形(OB、OD、OE相等,角BDE为直角)三角形BDE与三角形ACB相似,DE/AC=BD/AB所以DE=9/5(2)角FED=角OEB=角OBE角FED+角AEF=9

在圆心为O的圆中 AB是直径 AD是弦 过点B的切线BC与AD的延长线交于点C 且AD等于CD 求角ABD的度数 怎

因为AB是圆O的直径,BC是圆O的切线,所以BC垂直于AB,角ABC=90度,困为AB是圆O的直径,点D在圆O上,所以角ADB是直角,BD垂直于AC,又因为AD=CD,所以BD是AC的垂直平分线,所以

在圆心为O的圆中 AB是直径 AD是弦 过点B的切线BC与AD的延长线交于点C 且AD等于CD 求角ABD的度数

连接BD.BD垂直于AD,AD=CD,所以BD为三角形ABC的中线、高.又BC垂直于AB,所以ABC为等腰直角三角形.角DAB=45,则角ABD=90-45=45度

在平面直角坐标系xOy中,以原点O为圆心的圆过点A(-10,0),直线y=kx+3k-4与⊙O交于B、C两点,则弦BC的

根据直线y=kx-3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(-10,0),求出OB的长,再利用勾股定理求出BD,即可得出

在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx-3k+4与⊙O交于B,C两点,则弦BC的长

当k变化是直线y=k(x-3)+4也变化,但是当x=3时,k系数为0,y为恒定值4.所以y=k(x-3)+4必过恒定点D(3,4).

求圆心在直线y=-2x,且过原点O和点A(2,-1)的圆的方程``` 求圆心在直线y=-2x,且过原点O和点A(2,-1

OA的中垂线方程为y=2x-5/2联立y=2x-5/2与y=-2x得x=5/7∴圆心为(5/8,-5/4)半径=√[(5/8)+(-5/4)]=5√5/8∴(x-5/8)+(y+5/4)=125/64

已知:如图,割线AC与圆O交于点B、C,割线AD过圆心O.若圆O的半径是5,且∠DAC=30°,AD=13.求弦BC的长

作OM⊥BC于点M.∵AD=13,OD=5,∴AO=8∵∠DAC=30°,∴OM=4.在Rt△OCM中,OM=4,OC=5,∴MC=3∴BC=2MC=6.

如图,在等腰三角形ABC中,AB=AC,以AC为直径作圆O,与BC交于点E,过点E作ED⊥AB,垂足为点D,

(1)证明:连接OE,∵AB=AC,∴∠B=∠C(1分)∵OC=OE,∴∠C=∠CEO,(1分)∴∠B=∠CEO,∴AB∥EO,(1分)∵DE⊥AB,∴EO⊥DE,(1分)∵EO是圆O的半径,∴D为⊙

直线l过圆O的圆心O,点C在圆O上,且角AOC=30度,点P是

有两个,其实只要还是以O为圆心,原来的两倍为半径做圆,和l相交的两个点就是所求的点了.因为AOC是30度,也就是圆心角三十度,OA=OC.三角形的两个底角都是75度,ACO也就是75度,因为P是在同一

在△ABC中,∠BAC=90°,以AB为直径的半圆O交BC于点D,过D点做圆心O的切线交AC于点P.求证:PA=PC

如图,连接AD因为AB是圆O的直径,所以∠BDA=90°∠BAC=90°PD、PA都是圆O的切线,PD=PA∠PAD=∠PDA∠C+∠PAD=∠CDP+∠PDA=90°∠C=∠CDPPD=PC所以PA