圆O的内接三角形ABC,角A等于50度,问角OBC的度数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:10:31
圆O的内接三角形ABC,角A等于50度,问角OBC的度数
三角形abc是圆o的内接三角形

三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C

三角形ABC内接于圆O,已知圆O的半径为4,SIN A=5/8 求弦长 BC .

经过圆心O做线段AD垂直于BC交圆O于点D交BC于点E连接OB,OC则

三角形ABC是圆O的内接三角形,已知AB等于6角ACB等于30度,求圆O的半径

画三条边的中垂线,交点O即△ABC的外心.连接半径OA、OB;∵△OAB为底边△(已知OA=OB;圆心角∠AOB=2×同弧上的圆周角∠ACB=60º);∴半径=AB=6.

如图所示,三角形ABC为圆O的内接三角形,AB=1,角C=30度,则圆O的内接正方形的面积为多少?

连接AO,BO则∠AOB=60度(同弧所对圆心角,是其圆周角的2倍),即△AOB是等边三角形,即圆半径等于1其内接正方形边长等于根号2即内接正方形面积为2

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

三角形abc是圆形O的内接三角形 AB是圆的直径 角a等于20度 求角b

以直径为一边的圆内接三角形,其直径所对的角为90度.这是个定理.所以角b=90-20=70度

三角形ABC内接于圆O中,角A=30度,BC=3

直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2

在三角形ABC中,角A等于70度,圆O截三角形ABC的三边所得的弦长相等,则BOC等于多少度?

可知OB平分角B,OC平分角C角BOC=180-角OBC-角OCB=180-(角B+角C)/2=180-(180-角A)/2=180-110/2=125度

三角形ABC内接与圆O,AB=AC,角AOC=135度,圆O的半径为根号2,求三角形ABC的面积

延长AO与BC交于M因为AB=ACAM⊥BC∠AOC=∠AOB=135∠BOC=90OB=Oc=√2BC=2,OM=1AM=√2+1面积=√2+1

三角形ABC内接于圆心O,若角A=45度,BC=2求圆的面积

解因为2R=BC/sinA=2/√2/2=2√2所以圆的面积为s=πR²=2π

三角形ABC内接于圆O,D在半径OB 的延长线上,角BCD=角A=30度,证明cd与圆O 相切

连接OC由圆周角定理可知∠BOC=2∠A=60°∵OB=OC,∠BOC=60°∴ΔOBC为等边三角形∴∠OCB=60°∴∠OCD=∠OCB+∠BCD=60°+30°=90°∴OC⊥CD∴CD与圆O相切

如图,三角形是圆O的内接三角形,AD是圆O的直径,AD=8,且角ABC=角CAD.

我们知道,在同圆或等圆中,同弧对应的圆周角相等,再结合已知条件∠CAD=∠ABC故有∠ADC=∠ABC=∠CAD,又AD是直径,所以△CAD是等腰直角三角形.∴∠ADC=∠CAD=45°弧AC长=8π

如图,三角形ABC是圆O的内接三角形,角A是30°,BC是2cm,求圆O的半径

连接OB,OC,所以;∠BOC=2∠A=60°,cos60°=(OB^2+OC^2-BC^2)/2OBOC,即(2r^2-4)/2r^2=1/2,r=2

圆O半径为1厘米 三角形ABC为圆O的内接三角形 BC=根号2 那么∠A=

45°因为BC的长度是根号2,那么连接OB、OC,即可得到∠BOC=90°那么∠A的度数就是∠BOC的一半,45°

已知正三角形abc内接于圆o,四边形defg为圆o的内接正方形(d、e在直径上,f、g在圆上的正方形)S三角形abc=a

设圆半径为r,则内接正三角形ABC的边长等于r√3,高等于3r/2,面积S3=r²3√3/4;一边在直径上的内接正方形DEFG边长为r√(4/5),面积S4=4r²/5;S3/S4

三角形ABC是圆o的内接三角形,若角ABC=70度,则角AOC=?3Q

140度圆内相同的弧所对应的圆周角是相应的圆心角的一半

在平面直角坐标系中,三角形abc是圆o的内接三角形

到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.

在圆O的内接三角形ABC中,AB+AC=12

连接AO并延长交圆O于点E,连接BE,由上述结论可知AB•AC=AD•AE因为AB+AC=12,AB=x所以AC=12-x所以(12-x)•x=3×2y,所以y与x

如图,三角形ABC内接于圆O,点D是弧BC的中点,AE是三角形ABC的高求怔:AD平分角OAE

连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B