圆o是三角形的外接圆,ab是直径,过弧bc的中点p

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:17:23
圆o是三角形的外接圆,ab是直径,过弧bc的中点p
圆o是三角形ABC的外接圆,AB为直径 弧AC等于弧CF CD垂直于AB于D求证AE=CE

因CG垂直于AB,则CD=DG且弧AC=AG;因弧AC等于弧CF,所以弧AG=CF;则角ACG=CAF所以三角形ACE为等腰三角形,AE=CE

圆o是三角形的外接圆AB等于AC过A作AP平BC交BO于P求AP是圆O的切线

证明:连结AO,OC∵AB=AC,BO=CO∴AO是BC的垂直平分线∵AP//BC∴OA⊥AP∴AP是圆O的切线

P是三角形ABC的内心,AP交三角形的外接圆于D,E在AC的延长线上,且AD的平方=AB乘AE,求证DE是圆O的切线

证明:连接ODP为三角形ABC内切圆心,所以∠BAD=∠CAD弧BD=弧CD所以OD⊥BC在△ABD和△ADE中∠BAD=∠DAEAD²=AB×AE,即AB/AD=AD/AE所以△ABD∽△

圆o是三角形ABC的外接圆,AB为直径 弧AC等于弧CF CD垂直于AB于D 交圆O于G AF交CD于E求证AE=CE

∵AB是⊙O直径CD⊥AB∴弧AC=弧AG∵弧AC=弧CF∴弧AG=弧CF∴∠ACG=∠CAF∴AE=CE

如图,在Rt三角形ABC中,叫C=90度,AC=2,AB=6,圆O是三角形ABC的外接圆,D是弧BC的中点,则BD等于多

连接od交bc于点E,应为D是弧BC的中点所以od垂直bc,所以角deb等于90,应为ab是直径所以角acb为90,所以bc为4根号2,od垂直bc所以be等于2根号2,三角形obe相似三角形abco

圆O是三角形ABC的外接圆,AB为直径,弧AC=弧CF,CD垂直于AB于D,且交圆O于G,AF交CD于E,求AE=CE

∵弧AC=弧FC∴∠B=∠CAF(等弧所对圆周角相等)∵AB是直径∴AC⊥BC∴∠CAB+∠B=90°∵∠CAB+∠ACD=90°∴∠B=∠ACD∵∠B=∠CAF(已证)∴∠ACD=∠CAF∴CE=A

如图,圆O是三角形ABC的外接圆,AB为直径,AC=CF,CD垂直于AB于D,且交圆O于G,AF交CD于E

1)AB为直径则∠ACB=90°(直径对直角)2)CD垂直于AB于D即AB垂直于AG于D由垂径定理知弧AG=弧AC所对的角∠ACE=∠AFC△AFC中AC=CF则∠AFC=∠CAF=∠CAE所以∠AC

如图 圆o是三角形ABC的外接圆,BD为圆o的直径 AB=AC AD交BC于E ED=2AE AB^2=AD.AE

小乖的考拉:第(1)题中,是不是求∠ADB的度数啊?

已知圆O是三角形ABC的外接圆 CD是AB边上的高,AE是圆O的直径.求证:AC*BC=AE*CD

证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以

圆O是三角形ABC的外接圆,CG是直径,CE垂直AB于E,CA=4,CB=6,CE=3,求CG的长

连接BG.因为CG是直径,CE垂直于AB,所以角CBG=角1(角AEC)=90度.因为角A=角G,所以三角形CEA相似于三角形CBG,所以CE:CB=CA:CG.因为CA=4,CB=6,CE=3,所以

如图,圆O是三角形ABC的外接圆,CB=BD,AB是角CAD的角平分线,求证点D是圆上一点

反证法假如D不圆上,因为AB是角CAD的角平分线,所以BC不等于BD,与CB=BD相矛盾所以点D是圆上一点

如下图,圆O是三角形ABC的外接圆,AB=AC圆O的切线AP交BO的延长线于点p.若圆O的半径为5,BC为8,则AP=

在求解答网能搜到原题,这地方专门搜数理化的,可以试试哦,一下是答案

如图,圆o是三角形abc的外接圆,ab为直径,角bac的角平分线交圆o与点d,过点d的切线分别交ab,ac的延长线与点e

连接OD,因为EF是圆的切线,可知OD⊥EF△AOD为等腰三角形,∴∠2=∠3,AD平分∠CAO,可知∠1=∠2,得出∠1=∠3,内错角相等,可以得出AF∥OD,OD⊥EF,那么AF⊥EF.连接CB,

如图,AB是圆O的直径,过A作圆O的切线,AC=AB,求证:(1)CD是三角形ADE外接圆的切线 (2)AE=CD

(1)连AD,取AE中点M,连DM.∵AB是直径,∴∠ADB=∠ADE=90°,∴△ADE是直角三角形,DM是斜边中线,∴AM=DM,由AO=DO,∴∠MAO=∠MDO=90°.∴CD⊥MD.∵AE是

圆O是三角形ABC的外接圆,角C=30度,AB=2厘米,求圆O的半径

直接告诉你一个结论:正弦定理:在△ABC中,角A、B、C所对的边分别为a、b、c,则有  (a/sinA)=(b/sinB)=(c/sinC)=2R(R为三角形外接圆的半径)所以:2/sinC=2RR

如图,圆O是RT三角形的外接圆,AB为直径角ABC=30度CD是元O的切线ED垂直AB与F判断三

(1)∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC是正三角形.又∵CD是切线,∴∠OCD=90°.∴∠DCE=180°-60°-90°=30°.而ED⊥AB于F,∴∠CED=90