圆o是三角形abc的外接圆 ad是圆o的直径,且bd等于bc延长ad到
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:32:59
证明:连接ODP为三角形ABC内切圆心,所以∠BAD=∠CAD弧BD=弧CD所以OD⊥BC在△ABD和△ADE中∠BAD=∠DAEAD²=AB×AE,即AB/AD=AD/AE所以△ABD∽△
sinB=1.8/3sinB=2/2R正弦定理得R=5/3
三分之根号5再问:求过程再答:别忘了赞一个。因为弧ac,所以∠b等于∠d。因为ad是直径,所以∠dca是90度,由勾股得,dc为根号五,cos∠d等于ad分之dc等于三分之根号五。
由正弦定理:SinB/AC=2rSinB/2=3所以SinB=6
延长CE交圆O于F,连接AF、OF∵∠AFC=∠ABC,CE⊥AB,AD⊥BC∴∠FAB=∠BAD∴AF=AH∵∠BAC=60°∴∠ACE=90°-60°=30°∴∠AOF=60°又OA=OF∴ΔAO
连接dc因为ad为直径所以角acd为直角角abc等于角cad又因为角abc和角adc弧ac所对应的圆周角所以两角相等即三角形cad为等腰直角三角形因为oa为5所以ad为10所以ac等于cd等于五倍的根
证明:连接BD,∵AD是圆O的直径∴∠ABD=90°∴∠BAD+∠D=90°∵∠D、∠C所对应圆弧都为劣弧AB∴∠D=∠C∴∠BAD+∠C=90°∵AH⊥BC∴∠CAH+∠C=90°∴∠BAD=∠CA
题目不完整,题目是不是这样?圆O是三角形ABC的外接圆,AD是BC边上的高,已知BD=8,CD=3,AD=6,求圆O的面积为多少?记住定理:设外接圆半径为R,三边长为a,b,c,S为三角形面积则有关系
证明:连OB,并延长OB交圆O于M,连MC,因为∠A和∠BMC所对的弧为BC所以∠A=∠BMC,因为∠A=∠CBD所以∠BMC=∠CBD因为BM是直径所以∠BCM=90°所以∠BMC+∠MBC=90°
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
小乖的考拉:第(1)题中,是不是求∠ADB的度数啊?
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
这个应该不是什么定理,但证明很简单HAC=HBC=CBE就是倒角和弧的对应关系
过圆心O作OG垂直BC交BC于G点可知G为BC的中点,因为EF垂直BC,AD垂直BC,所以EF‖OG‖AD,又因为O为AE的中点,得G为DF的中点,所以BF=BG+GF=CG+DG=CD,即BF=CD
过O作OH⊥BC于H,则BH=CH(垂径分弦),∵DF⊥BC,AE⊥BC,∴DF∥OH∥AE,∴EH/FH=AO/BO=1(平行线分线段成比例),∴EH=FH,∴BH-FH=CH-EH,即BF=EC.
在圆O中,∠B=∠D,所以sin∠B=sin∠D=AC/AD,因为AD=2r=3,CD=2,所以AC=√(AD^2-CD^2)=√5,所以sin∠B=√5/3
1、证明∵AD平分∠BAC∴∠BAD=∠CAD∵∠BAE、∠BCE所对应圆O圆弧均为弧BE∴∠BCE=∠BAD∵∠BCE、∠DFE所对应圆O1圆弧均为弧DE∴∠DFE=∠BCE∴∠DFE=∠CAF∵∠
延长AD交圆O于E,连接BE,过O作OF垂直AD于F,OG垂直BC于G,连接OA因为角EBC与角EAC同弧所以角EBC=角EAC因为角BDE=角ADC所以三角形BDE相似于三角形ADC所以BD/DE=
连接DC,角D=角B,AC垂直CD,求得CD=根号21,则角C正切为2/根号21,即得答案再问:角C正切为2/根号21??应该是角D吧??