圆O:x^2 y^2=1的切线与椭圆x^2 2 Y^2=1则△AOB面积s
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:21:22
y=4x+m=(3/2)x^2+x-1/23x^2-6x-1-2m=0(-6)^2-4*3*(-1-2m)=0m=-2y=4x-2
圆O:x^2+y^2=1和圆C:(x-3)^2+(y-4)^2=4圆心距|OC|=5>r1+r2=3∴二圆相离,M在二圆外根据题意MP=MA=MQ=MB∴√(|MO|²-1)=√(|M
圆的方程可化为(X+1)^2+(y-2)^2=2,则圆心为(-1,2),半径为根号2(1)设截距为a,则切线方程为x/a+y/a=1,即x+y-a=0圆心到直线的距离是|-1+2-a|/根号2=根号2
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
设椭圆上的点为点p(x,y),可得AB直线为Xx+Yy=1则与坐标系的交点为(0,1/y)(1/x,0)则MN的最小值为(1/y^2+1/x^2)^1/2所以答案为5/6
y′=2x(lnx-1)+x当x=e,时,y′=e;y=0∴切线:y=e(x-e)法线:y=(x-e)/e再问:求切线和法线的方法是什么,谢谢再答:先求导。再过点球切线和法线y′=2x(lnx-1)+
(1)此圆圆心O(0,0)半径r=2,过M的直线L与圆相切,且只有一条,所以M必在圆上,即M(1,√3).直线OM垂直直线L于M,直线OM的斜率为√3,直线L的斜率k=-√3/3,直线L的一般式y=k
曲线y=x平方-16分之一上m处的切线斜率k1=y'=2xx=mk1=2m直线2x+y+1=0k2=-2曲线y=x平方-16分之一上m处的切线与直线2x+y+1=0垂直所以:k1k2=-1k1=1/2
设M(x,y),则点M到圆O的切线长等于√(x^2+y^2-1),MQ=√[(x-2)^2+y^2],根据题意,有√(x^2+y^2-1)=1+√[(x-2)^2+y^2],化简这个方程可得3(x-4
y'=2x,设切点是M(t,t²),则切线斜率k=2t,则切线方程是:2tx-y-t²=0,与直线y=0的交点是Q(t/2,0),与直线x=8的交点是P(8,16t-t²
设切线长为M点到圆心的距离为3半径为2所以切线长为√9-4=√5(2)设切线方程为y=k(x-3)即kx-y-3k=0d=|3k|/√k²+1=2所以9k²=4k²+4k
1、AM、BN都垂直直线AB,则可以得到它们平行;2、连结OC、OD、OE,则三角形DOC为直角三角形,且DE=AD=x,CE=BC=y,利用三角形DOC中是射影定理,有xy=OE²=4,即
用向量解释:设M(x,y)是切线上任一点,向量CM=(x-x1,y-y1);向量OC=(x1,y1)向量CM⊥向量OC(x-x1,y-y1)*(x1,y1)=0x1x+yy1=x1^2+y1^2=2再
设点M坐标为(x,y)圆C半径为1,圆心C坐标为(0,0)过点M作圆C的切线,切点为P则|MP|²=|MC|²-|CP|²=x²+y²-1显然,x&s
设M(x,y)即m到圆O的切线长根据勾股定理为原点到M的距离平方减去圆的半径然后在开根号即为根号下x^2+y^2-1,MQ=根号下(x-2)^2+y^2切线长与MQ的比为根号2,代入得根号x^2+y^
(1)将椭圆方程与直线方程联列,把k和b看成是已知数,可以求出两者交点的坐标值.(2)AB=4/3,且,AB与圆的交点到圆心的距离为1,即y=kx+b与y=-(1/k)x直线的交点到圆心的距离为1,将
求出圆方程X^2+Y^2=16,设P点(8,m),则P,A,O,B四点所在的圆方程X^2+Y^2-8x-my=0两个圆方程相减得直线AB方程:8x+my-16=0.过定点(2,0)
y的导函数等于6(2x-1)^2把0代入就是6了再问:导函数不是3(2x-1)^2吗?再答:这是复合函数求导,你忘记对2x-1再求一次导等于2,再乘上了再问:可是不是把2x-1看作一个整体吗?然后看成
设P为△MAQ的垂心,则PQ‖AO、AP‖OQ∴四边形AOQP为菱形.∴|PQ|=|OA|=2.设P(x,y)、Q(x0,y0),则x0=x,y-y0=2,∵x0^2+y0^2=4∴x^2+(y-2)
是用基本法做的 设动点M(x,y) 切线长与MQ的绝对值的比等于常数λ √(x^2+y^2-1)/√[(x-2)^2+y^2]=λ x^2+y^2-1=λ^2(x-2)^2+λ^2*y^2