图所示,有一杠杆可绕O点转动,在其中点挂一重物,现在A端施加动力FA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:49:07
图所示,有一杠杆可绕O点转动,在其中点挂一重物,现在A端施加动力FA
47. 图24甲所示,杠杆MN可绕固定点O在竖直平面内转动,OM:ON=1:3,物体A用细绳挂在杠杆M端,某同学在杠杆N

解题思路:本题主要考察杠杆平衡条件和机械效率,主要抓住公式中的物理量进行计算解题过程:

有关于杠杆的知识一根轻质杠杆可绕O点转动,在杠杆的中点挂一重物G,在杠杆的另一端施加一个方向始终竖直向上的力F,力F使杠

一根轻质杠杆可绕O点转动,在杠杆的中点挂一重物G,在杠杆的另一端施加一个方向始终竖直向上的力F,力F使杠杆从所示位置慢慢抬起到水平位置的过程中,力F的力臂LF将【变大】,重力G的力臂LG【变大】则力F

如图所示,轻质杠杆OA长50厘米,可绕支点O转动,A端有细线竖直向上拉着,离O点30厘米

(1)用杠杆平衡原理,10×30=F*50可得,F=6N(2)由第一问可知F1的分力F始终不变,当夹角变大时,力F1变大

如上图1所示 杠杆AB可绕O点在竖直平面内转动 ,OA:OB=2:3,OD:OB=1:1,滑轮重为100N。当在B点施加

解题思路:对杠杆、滑轮、正方体进行受力分析,应用杠杆平衡条件、平衡条件、压强公式分析答题.解题过程:最终答案:略

如图15所示,在杠杆AB的中点O处挂一个重物G,杠杆B处受一个水平方向的力F的作用,绕A点沿图示方向转动.当杠杆匀速转动

变大,根据力矩相等计算,以A点为圆心做方程F乘以AB垂直边等于G乘以AO水平边,当杆向上运动时AB垂直边减小,AO水平边增大,G不变,所以F必定增大.

一轻质杠杆OA可绕O点无摩擦转动,A端用绳子系在竖直墙壁上B点,在杠杆C点悬挂一重为20N的物体

对杠杆分析,用平衡条件--合力矩为0.G*OC=F*OA*sin30°20*30=F*50*0.5所求拉力大小是 F=24牛再问:为什么?给讲讲撒再答:用杠杆的平衡条件,O是支点,拉力是动力,所挂物体

如图所示,一轻质杠杆OA可绕O点无摩擦转动,A端用绳子系在竖直墙壁的B点,在杠杆的C点悬挂一重为20N的物体,杠杆处于水

(1)过支点O作垂直绳子对杠杆的拉力F作用线的垂线段(即力臂L).如图所示:(2)如上图所示,在Rt△OAD中,∠ODA=90°,∠DAO=30°,∴OD=12OA=12×50cm=25cm根据杠杆平

如图,OA是一根粗细均匀的杠杆(杆重不计)可绕O点转动,在A端挂一个铁块,弹簧测力计挂在杠杆中心B处,当杠杆在水平为静止

m铁=(2*N弹)/g=0.78(kg)V铁=m铁/ρ铁=0.0001(m3)F浮=ρgv铁=1(N)所以,F弹=(G铁-F浮)/2=(7.8-1)/2=3.4(N)对不对呀

如图所示,轻质杠杆可绕O转动,在A点始终受一垂直作用于杠杆的力,在从A缓慢转动A’位置时,力F将(  )

在转动过程中,力F的力矩克服重力力矩而使杠杆运动,可认为二力矩相等,重力不变,而重力的力矩在杠杆水平时最大,力矩最大,所以说从A到A′过程中重力力矩先变大后变小,而F的力臂不变,故F先变大后变小.故选

如图所示,一轻制杠杆OA可绕O点转动,A端用绳子系住...

1:20cm2:600N要解释的话HI百度留言.祝您成功

如图所示,一轻质杠杆OA可绕O点转动,A端用绳子系住,绳子的另一端系于竖直墙壁的C点处.在杠杆中点B处悬挂一重为600N

(1)拉力F的力臂如图所示,sin∠OAC=OCAC=12ACAC=12,∠OAC=30°,AC=OAcos30°=20cm32=4033cm,OC=12AC=2033cm,三角形面积为:12OA×O

 如图,一轻质杠杆可绕O点转动,A点处挂上一重物,B点处用弹簧秤竖直向上拉着,杠杆恰在水平位置平衡,若弹簧秤示

1、O为支点,OA为重力力臂OB为拉力力臂,根据杠杆平衡的条件可知G=(F×OB)/OA=(9N×0.4m)/(0.4m+0.2m)=6N故答案:6N2、如果是OA:OB=1:2,做法如下:(1)、当

(2013•蒙城县一模)如图,杠杆AB是一根粗细均匀的木杆,可绕固定点O转动.在木杆的B端竖直悬挂一个重为10N的重物G

细绳的拉力沿细绳方向,从支点O作出细绳拉力F的作用线的垂线段,垂线段即为细绳拉力的力臂LF,如图所示.如图所示,细绳拉力F的力臂为:LF=OAsin30°=1.0m×12=0.5m,重物的力臂LG=O

一轻质杠杆长0.7米,可绕O点转动,杠杆恰在水平位置平衡,F2大小为7.5牛,求F1力的大

交给你办法吧……轻质杠杆说明不考虑自身重量杠杆恰在水平位置平衡说明o点在杠杆的中点处,所以两侧对称,所以F2为7.5牛的话若F1力的方向与F2平行,则F2=F1.再问:那公式怎么列、、、再答:公式?F

一根轻质杠杆可绕O点转动,在杠杆的中点挂一重物G,在杆的另一端施加一个方向始终保持水平的力F,如图所示,力F使杆从所示位

F的力臂明显是减小的重力G铭心啊是不变的重力的力臂是增大的GLg=FLf所以F变大选AD

如图所示,重力不计的一木板可绕O点无摩擦转动,木板可以视为杠杆,在杠杆的左侧M点挂有一个边长为0.2m的立方体A,在A的

(1)∵ρA=ρB,∴mAmB=VAVB=81,∴GA=8GB-------------①人到达N点静止时,杠杆平衡时:∵FA对杠杆LOM=G人v人t人,即FA对杠杆×4m=G人×0.1m/s×6s,

如图所示,一轻质杠杆OA可绕O点转动,A端用绳子系住,绳子的另一端系于竖直墙壁的C点在杠杆中点B处悬挂一

如图所示,一轻质杠杆OA可绕O点转动,A端用绳子系住,绳子的另一端系于接力F的力臂L1=√3L(3的平方根).设最远处OB,此时拉力达到最大,即1