回归方程不显著是不是意味着每个解释变量都不显著
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:19:22
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性.各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系
不显著就应该剔除,除非你想硬塞进这个自变量,那你只有改数据了
在一元回归情形,检验的话,相关系数检验、F检验、T检验的检验结果是一样的,所以只做简单的相关检验r就可以了.r=22%,(0
当然不是,R2是用来衡量解释变量对被解释变量的解释力的,显著性需要看回归系数的t统计量或F统计量,看起在选点的显著水平下是否显著.再问:作者认为种子重量每增加1g发芽率就提高2.17%,对吗?再答:那
Excel中的TINV函数计算,TINV(0.05,6)=2.447.既然t的绝对值用同样方法,可以测试其他每个自变量的统计显著性水平.以下是每个自变量的t
简单和你说吧首先看方差检验表,通过检验了说明回归方程可靠性强,反之则不强,回归系数的检验是说明自变量是不是对因变量真的有影响!
你这里面从各个变量的t检验看显然有变量不显著,把这些变量剔除掉重新建立新的回归模型就是了,哪儿有在这种伪回归的情况下纠结方差分析是不是显著的……再问:那有无回归模型显著,但有个别变量不显著的情况,请教
如果是非常不显著,建议删除,其它情况比如15%的水平下是显著的,建议保留,这得根据实际问题来.可以试着先将最不显著的剔除掉,再看看方程,也许就会出现显著系数增多的情况,建议一个个删除.
β对应的P值大于所给的显著性水平一般取α=0.05意为β对应的变量对因变量的影响明显
简单线性:等式两边都不取对数对数:等式两边都取对数半对数:等式一边取对数显著性检验:单个系数t检验,联合显著性F检验
参数显著的,就是说该参数估计量的统计性质可以拒绝原假设:该参数=0,即该参数显著不等于0,也就是该参数前面的变量对y确实有影响,出现在回归方程里面是有道理的.参数的显著性,是实证模型有意义的关键所在.
你有没有统计软件,SPSS,eviews都可以很容易得到的用excel也行,点击工具-数据分析(没有的话,先选中加载宏-选中分析工具库,之后就会出现数据分析)-在里面找到“回归”,然后就可以出来啦.
你可以查阅下procpls语句,下面链接有几个例子:http://support.sas.com/rnd/app/papers/plsex.pdf
比较复杂,特别是数据较多而且不是整数时,基本上都需要用计算器,不然太费时而且对计算能力也是一种考验啊!
解题思路:先求出横标和纵标的平均数,利用公式求出线性回归方程的系数解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prc
一,首先算出不同分布所对应的待定值a二,然后根据分布值表查出在不同的显著性水平下的值a1二,比较二者的大小就可判断:如果前者大则拒绝反之接受.具体的例子可以看一下大学的数理统计,不同的分布有不同的结果
刚看了一篇外文文献,其中提到了几个变量之间的相关性分析.作者用SPSS得出A与B的相关性系数约为0.09,但显著性水平大于0.05即不显著.随后继续作回归性分析(未阐明是否是多元线性)结论是BETA值
不能拒绝二次adm项系数为0的假设所以不显著你可以看看二次回归和一次回归R方的差异如果不大说明一次v即可.再问:但是R^2很大啊。。。再答:一次和二次的R方差异是多少?再问:相差不大。。。
就是一元一次如果y=ax^2设z=x^2就变成y=az可以看这个参考y=polyfit(x,y,2)只是拟合回归方程而已.p接近于0的话是说明回归显著,即系数显著不为0也就是x^2对y的影响显著你合度