回归分析中相关性的大小是看sig还是看相关系数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:03:33
*代表p再问:能具体说说表格中每个数字的意思吗?比如表中哪个数字代表P值,哪个数字代表样本量等等再答:。。。。55是样本量,0.003是p,你这完全不懂,还是别自己瞎做再问:那1和0.399呢?
_问题描述:在SPSS中做主成成分分析的时候有一步是指标之间的相关性判定,我想知道具体是怎么进行判定的,他的算法、原理是什么?答案1::说判定有些严格,其实就是观察一下各个指标的相关程度.一般来说相关
说判定有些严格,其实就是观察一下各个指标的相关程度.一般来说相关性越是高,做主成分分析就越是成功.主成分分析是通过降低空间维度来体现所有变量的特征使得样本点分散程度极大,说得直观一点就是寻找多个变量的
强再问:确定么?
相关系数是0.357,p=0.009,显著的我替别人做这类的数据分析蛮多的再问:意思是二者有相关性且较为显著吗?可以简单说下怎么看吗QAQ
先进性复共线性检验,如果变量之间复共线性特别大,那么进行岭回归和主成分回归,可以减少复共线性,岭回归是对变量采取了二范数约束,所以最后会压缩变量的系数,从而达到减小复共线性的目的,另外这个方法适合于p
A.自变量是给定的,因变量是随机的
你的问题不太明确.一般来说,个人常用的方法有两种(前提是每个题的选项都是一致,如都为测量态度的五级,从非常不同意到非常同意):累加形成新变量.可将一组同性质的题目每题的选项分别按照非常不同意=1,比较
统计可以用很科学很复杂的方式去处理,也可以简单化的处理,主要看你数据的用途,如果不是需要发表论文之类,可以按以下简单方式来操作,spss的回归过程,已经包含了验证.1、在spss里把A、B、C、D四个
anovab是对回归关系的方差分析,做的一个F检验,P
9个样本数据计算出的平均每日转发数与相关微博搜索量的pearson相关系数值0.905,它的实际显著性水平为0.001,小于理论显著性水平0.01,说明相关系数的值不是由偶然因素造成的,0.905接近
如果L1L3的系数不显著的话,可以不必管它,因为相关系数本身就不高0.254和0.236.虽然是两两相关,但是相关系数包含了其他因素的影响,而回归方程中的系数表示控制了其他2个变量的影响后,该变量与因
确实有“相关系数检验表”,我只在一些关于预测的书中看到过,比如《经济预测技术》(清华大学出版社1991,李一智主编),而统计书中却没见过.R的临界值是与自由度有关系的,它的值和F检验的临界值有某种函数
分数没用的你有什么问题直接说我经常帮别人做这类的数据分析的再问:那我加您,辛苦了,我的问题都挺基础的...
滞后期p一般是1个1个往上加每加一个就用t,F统计检验看看各个系数然后断定是否继续加这样
虚拟变量,你可以试试0-1这样的虚拟变量,含0的,对应的y低,含1的对应的y高(假设正相关).其实主要看你的虚拟变量打算加在哪里,加在常数项就这么做,加在系数项的话就是另外一组数据了.你可以先写个含虚
相关分析是一对一回归分析是一对多后者互相有影响最常见是多元共线性用vif检验
一般可以用统计软件中的逐步回归方法,可以自动把有意义的变量纳入到回归模型里面;也可以先做单变量的回归,然后把单变量分析有意义的自变量都纳入到回归模型里,做多元回归,但是在临床或者实际上有关联的重要观察
有什么怎么办的?那结论就是不大了啊,你还要纠结什么?非要把女人说成男人吗?