四边形对边中点的连线与对角线中点的连线共点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:20:08
建立平行四边形ABCD,E、F分别为BC,CD的中点,延长AE交DC的延长线于G,BD交AE、AF于M、N.向量AB与向量CG平行,向量BE等于向量EA,得:向量AB等于向量CG,即:向量AB等于向量
有很多证明方法,楼上用全等三角形的证法,但忘说了O点由来.我用平行四边形的证法.已知:ABCD为平行四边形,E,F为AB,CD的中点,连接EF,求证:EF平分AC和BD.证明:设EF交BD于P点.∵A
证明:取AD的中点G,连接EG、FG∵G是AD的中点,E是AC的中点∴GE是△ACD的中位线∴GE=CD/2∵G是AD的中点,F是BD的中点∴GF是△ABD的中位线∴GF=AB/2∵在△EFG中:EF
已知:ABCD为平行四边形,E为BC的中点,F为CD的中点,BD为平行四边形的对角线.AE与BD相交于H,AF与BD相交于G.求证:H,G是BD的三等分点.证明:连AC与BD相交于O,由于AO=CO,
平行四边形ABCDE、H为CD边和AB的中点连接AE、CH分别交于对角线BD于F、G可以得到△DEF≌△BHG∴DE=G∴△DCG≌△BCF∴DG=CF又∵AE‖CH∴DF=FG=GB所以得证孩子还是
任意四边形的4个顶点为:A,B,C,D.设AB的中点为a,BC的中点为b,BD的中点为c,CD的中点为a',DA的中点为b',AC的中点为c'.显然在三角形abc和三角形a'b'c'中,ab‖a'b'
不是定理/公理,可以在试卷中用,但须简单说明,底和高相等,所以面积相等……
如果ABCD为四边形,连接AC,BD,根据三角形中位线定律证明得到其四边形对应两边相等,那就是平行四边形啦
这是一个任意凸四边形已知:四边形ABCD,E,F分别是对角线AC,BD的中点求证EF
四边形ABCD,EF为两中点连线,连接BF、DF有三角形中线的推论得4EF^2=2BF^2+2DF^2-BD^2,同理4DF^2=2AD^2+2CD^2-AC^2,4BF^2=2AB^2+2BC^2-
从位置关系来讲,任意四边形一组对边中点连线段与两条对角线必然不平行.从大小关系来讲,任意四边形一组对边中点连线段小于两条对角线之和的一半.再找个第三边的中点,连接三个中点之后,根据中位线定理和三角形的
空间四边形A-BCD的对边相等,取AB中点M,CD中点N,因为AC=BDAD=BD所以三角形ACB全等于三角形BDA,所以角ABC=角BAD,所以三角形BCM全等于三角形ADM所以DM=CM所以MN垂
空间四边形定义中规定空间四边形4边中点在一个平面上,那这4点所连成的线段就在一个平面上
对角的连线,要是平面的连线就不是空间四边形了
证明:设该四边形为ABCD,则E、F、G、H为DA、AB、BC、CD上的中点,连EH、HG、GF、FE,因为E、H为DA、DC边上的中点,所以在△DAC中EH//AC同理得FG//AC、EF//DB、
如果ABCD为四边形,连接AC,BD,根据三角形中位线定律证明得到其四边形对应两边相等,那就是平行四边形啦
设ABCD的坐标分别求出全部点的坐标就可以了,然后证明其中2条的交点在另外一条上,全是算数的,没推理的,自己算吧
利用三角形中位线来证再问:要怎么证?是平行四边形还好证些,但四边形我不知道。可以告诉我怎样证吗,谢谢~~~~再答:任意四边形abcd,连接四边形的两条对角线ac、bd,再连接相邻各边中点(ab中点为e
根号下8,过短边一端点作线垂直于长边,两斜边中点连线=长边端点到垂足.再问:方法差不多,我明白了
空间四边形ABCD,AB、BC、CD、DA中点分别为E、F、G、H.EG、FH中点分别为M、N.向量AM=(AE+AG)/2=[AB/2+(AC+AD)/2]/2=(AB+AC+AD)/4同理可得AN