四边形ABCD是菱形,AC=8,DB=6,DH垂直AB于点H,求DH的长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:19:25
四边形ABCD是菱形,AC=8,DB=6,DH垂直AB于点H,求DH的长
如图 四边形abcd是菱形 ac 8 db 6 dh垂直ab于点h 求dh的长?

24/5,用勾股定理得出边长ab=5,根据相似三角形定理推出bdh和abo相似,o点为对角线交点.根据相似三角形的特性,ab/bd=5/6,所以ao/dh=5/6,将ao=4带入,dh=24/5.

如图在四边形ABCD中,AD=BC,点E F G H分别是AB CD AC BD的中点求证四边形EGFH是菱形

证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG

如图,在四边形中,ad‖bc,ac、db相交于点o,且角1=角2,ab=bc.求证:四边形abcd是菱形

因为AB∥BC所以∠2=∠3因为∠1=∠2所以角1=角3所以AB=BC又因为AB=BC所以AD=BC=AD又AD∥BC所以四边形ABCD是平行四边形

如图所示,已知四边形ABCD是正方形,对角线AC,BD相交于点O,四边形AEFC是菱形

本题有结论:∠CAE=30°.理由:∵ABCD是正方形,∴OB=1/2AC,OB⊥AC,∵ABFC是菱形,∴AE=AC,AC∥BF,∵EH⊥AC,∴四边形OBEH是矩形,∴EH=OB,∴tan∠EAH

如图,平行四边形ABCD中,AC平分∠BAD.求证:四边形ABCD是菱形.

证明:∵在平行四边形ABCD中,AB∥CD,∴∠DCA=∠BAC,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形.

在四边形ABCD中,EFGH分别是AD,BC,BD,AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足什么条件

还应满足AB=CD,理由如下:∵E、G是AD、BD中点,∴EG=1/2AB,同理FH=1/2AB,∴EG=FH,同理可得FG=EH=1/2CD,∴四边形EGFH是平行四边形,又∵AB=CD,∴EG=F

如图 ,已知四边形ABCD中,AB=CD,E,F,G,H分别是BD,AC,AD,BC的中点,求证四边形EHFG是菱形.

在△=ABC中,因为F、H分别是AC,BC的中点,所以FH平行且等于1/2AB,同理可得EG=1/2AB,EH=1/2DC,GF=1/2DC,又因为AB=DC,所欲FH=EG=EH=GF,所以四边形E

已知:如图,在四边形ABCD中,AD‖BC,BD垂直平分AC.求证:四边形ABCD是菱形.

AC交BD于O点,三角形ADO与三角形BOC相似,所以DO=BO,对角线互相垂直且平分的四边形是菱形

5.如图,O是菱形ABCD的对角线的交点,DE//AC,CE//BD.求证:四边形OCED是菱形.

在菱形ABCD中OA=OB=OC=OD又DE//AC,CE//BD∴DE//OCCE//OD∴四边形OCED为平行四边形又OC=OD∴四边形OCED为菱形(一组邻边相等的平行四边形是菱形)

已知,如图,四边形ABCD是菱形

(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1

在平行四边形ABCD中,对角线AC平分角DAB.这个四边形是菱形吗

是菱形.∵AC平分∠DAB,∴∠DAC=∠BAC,∵DC‖AB,∴∠DCA=∠BAC=∠DAC,(两直线平行,内错角相等)∴AD=DC(等角对等边)∴平行四边形ABCD是菱形(有一组邻边相等的平行四边

在四边形ABCD中,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD是菱形.

∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;

如图,过四边形ABCD的各顶点作对角线BD,AC的平行线围成四边形EFGH,若四边形EFGH是菱形,则原四边形一定是(

填:对角线相等的四边形根据平行四边形的判定,可得四边形EFGH是平行四边形,又知它是菱形,则AC=BD所以只能推出一定是对角线相等的四边形

过四边形ABCD的顶点A,B,C,D作BC,AC的平行线围成四边形EFGH,若EFGH是菱形,则四边形ABCD一定是(?

对角线相等的四边形首先你的题目打错了吧,应该是(过四边形ABCD的顶点A,B,C,D作BD,AC的平行线)才对.分析:你可以先画一个菱形EFGH,然后在其内部分别作EF与GH的平行线AC和BD,与EF

已知:在菱形ABCD中,E,F在AC上,且AE=CF.求证四边形DEBF是菱形

连接BD交AC于点OAC⊥BDAO=COBO=DO∵AE=CF∴EO=FO所以BEDFO组成的五个直角三角形全等∴BE=ED=DF=FB∴DEBF是菱形

已知四边形ABCD为菱形,求证AC垂直于BD,是向量数量积的问题.

向量AC.向量BD=(AB+AD).(BA+BC)=(AB+AD).(BA+AD)=(AD+AB).(AD-AB)=AD²-AB²=0所以AC垂直于BD

四边形ABCD是菱形周长为20对角线AC BD交于点O ACBD4:3求菱形的面积

ac与bd交于点o延长ad至点m使ad=dm,链接cm因为四边形ABCD是菱形,所以ao=oc又因为ad=dm所以od平行于cm,所以角acm=90度,设ac4xbd3x,(4x)的方+(3x)的方=

如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应

条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD

如图,四边形ABCD是菱形,对角线AC、BD相较于点O.

∵∠ABC=60°,∠BAD=120°,四边形ABCD是菱形∴△ABC与△ADC是等边三角形又∵菱形的周长是36cm,AC=9cm∴AB=BC=CD=AD=9㎝又∵AC⊥BD于点O∴BD=2√[9&#