四边形abcd为圆o的外切四边形,求证AO2 CO2=AB·AD BC·CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 08:09:10
(1)∵等腰梯形是圆O的外切四边形∴AD+BC=AB+DC=2AB【根据圆外切四边形对边和相等】又因为EF为梯形的中位线∴2EF=AD+BC=2AB∴EF=AB(2)∵AD+BC=2EF=10AD:B
∵O、E分别是对角线交点,∴BO=OD,DE=EA'∴OE=1/2A'B,同理O'F=1/2CD',∵A'D'∥BC且A'D'=BC,∴四边形A'BCD'是平行四边形,∴A'B=CD',∴OE=O'F
因为圆O的外切正方形ABCD的边长为2cm,所以圆的直径为2cm,所以半径为1cm.求圆O正六边形的面积,若正六边形的一边为AB,过O做OM⊥AB于M,在直角△OAM中,OA=1,OM=1/2,又勾股
矩形.∵菱形的对角线互相垂直且平分,∴分得的四个直角三角形全等,∵全等的三角形的高线相等,即OE=OF=OG=OH,∵菱形的对边平行,∴EG=FH,∴四边形EFGH是矩形.
4:25再问:有过程吗????再答:要是小题的话取个特殊情况就好啦,再问:不能写出过程吗????再答:要是小题的话,你可以假设四边形为正方形吧,已知对角线的大小,可以求出边长吧,有了边长就可以求正方形
E,F,G,H这四点为中点的话,EF,GH平行于AC且等于1/2AC.同理:FG,HE平行于BD且等于1/2BD.楼上对了,是平行四边行,∠1,∠2,∠3,∠4就满足平行四边行的规律,楼上又对了.这应
存在.长方形对角线的交点即为O点.此时OA=OB=OC=OD.自己画一个图,使边长=OA,即可.这是一菱形,对角线互相垂直.
证明:∵E、F、G、H分别为四边中点∴EF‖AC,EF=1/2AC,GH‖AC,GH=1/2AC∴EF‖GH,EF=GH∴四边形EFGH是平行四边形∵AC⊥BD∴EF⊥EH(∵EH‖BD,EF‖AC)
a^4+b^4+c^4+d^4-4abcd=(a^2-b^2)^2+2a^2b^2+(c^2-d^2)^2+2c^2d^2-4abcd=(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)
∵△ABD中,E,H是AB和AD中点∴EH是△ABD的中位线∴EH∥BD,EH=1/2BD同理FG∥BD,FG=1/2BD∴EH∥FG,EH=FG∴平行四边形EHGF再问:不好意思,我提的问题下半部分
易证:2(AB+CD)=周长,AB+CD=24/2=12(AB+CD)*圆O半径=面积,圆O半径=面积/(AB+CD)=24/12=2
建立如图所示圆O为△ABC的内切圆 ∴OE⊥ABOF⊥BCOH⊥DCOI⊥AD∴S=△AOD+△AOB+△BOC+△COD =&nb
解题思路:观察a4+b4+c4+d4=4abcd,运用完全平方式转化为(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.运用非负数的性质,偶次方大于等于0.因此可解得a、b、c、d间的数值关
∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=12AC=5,同理EF=5,根据矩形的对角线相等,连接BD,得到:EH=FG=5,∴四边形EFGH的周长为20.故答案是:20.
由图可知,内接正六边形由六个边长为1/2正方形边长的正三角形组成,面积为6×(√3/4)×1×1=3√3/2
设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,
(1)四边形efgh是平行四边形,见图1证明:根据平行四边形对角线的性质,O点分别平分两条对角线即平行四边形ABCD的两对各不相邻的两条边关于O点中心对称∴O点分别平分eg、fh.∴四边形efgh是平
已知四边形ABCD是圆的外切四边形可得两组对边相等即AD+BC=AB+CD它的周长为48cm,且AB∶BC∶CD=3∶2∶5可设AB=3xBC=2xCD=5x则AD=6x故16x=48解得x=3AB
如图,OA*OR=|OA|*|OR|*cos∠AOR=√2*cos∠AOR,由于0°≤∠AOR≤180°,所以-√2≤OA*OR≤√2,且OQ*OR=|OQ|*|OR|*cos120°=-1/2,所以