四棱锥p-abcd ∠abc=∠acd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:55:49
四棱锥p-abcd ∠abc=∠acd
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中

1.是垂直的∵PA⊥面ABCD,AE∈面ABCD∴PA⊥AE∵ABCD是菱形,∠ABC=60°∴△ABC是正三角形又E是BC中点∴AE⊥BC又AD∥BC∴AE⊥AD∵PA∩AD=面PAD∴AE⊥面PA

已知四棱锥P-ABCD,PA⊥平面ABCD,底面ABCD是直角梯形,∠A=90°

(1)求证BF平行于平面PAD;证明:设PD中点为E,连结FE,则FE=CD/2=AB,且FE‖CD‖AB,所以四边形ABFE是平行四边形,所以BF‖AE,又AE在平面PAD上,所以BF平行于平面PA

已知四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,E为BC中点,求证:AE⊥PD.

连接AC所以三角形ABC为等边三角形AE平分BC所以AE垂直于BC因为AD//BC所以AE垂直于ADPA垂直于平面ABCD因为AE属于平面ABCD所以PA垂直于AE因为AE垂直于ADAE垂直于PAAP

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC数学

(Ⅰ)证明:∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD∵PC⊥平面BDE,BD⊂平面BDE∴PC⊥BD,又PA∩PC=P∴BD⊥平面PAB;(Ⅱ)建立如图所示的坐标

空间角已知,四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别为BC、PC的中点,

(1)证明:∵E为BC的中点,∴AE∈平面ABCD,∵PA⊥平面ABCD,∴平面PAD⊥平面ABCD,∴PD⊥AE.

已知四棱锥P-ABCD为菱形,∠ABC=60度,PA⊥平面ABCD,E为BC中点,求证:AE⊥PD

连接AC因为ABC为全等△所以AE垂直BC因为AE垂直BC所以角BAE=30度因为ABCD为◇所以角BAE=90度所以EA垂直AD因为PA⊥平面ABCD平面PAD⊥平面ABCD所以AE⊥PD

如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°

郭敦顒回答:∵在四棱锥P—ABCDK中,PA⊥平面ABCD,∠ABC=∠BAD=90°PA=AB=BC=AD/2=1,(Ⅰ)求证:平面PAC⊥平面PCD;证明:连AC,作CE⊥AD于E,则E是AD的中

立体几何已知四棱锥P-ABCD,地面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.

可以试着建立空间坐标系然后找出最大角再求二面角E-AF-C的余弦值.利用PA⊥平面ABCD

四棱锥P-ABCD的底面为菱形∠ABC=120°,PA⊥底面ABCD,AB=1,PA=根号3,E为PC的

存在.在平面PCD内,过D作DM⊥PC于M,点M即为所求.MC=sqrt(6)/4【sqrt(6)表示根号6】再问:大大能不能写详细点啊、、看不懂啊~~泪奔~~o(>_

已知四棱锥P-ABCD中∠DAB=∠ABC=90°,AB=BC=1,PA=AD=2,PA⊥平面ABCD

∠DAB=∠ABC=90°→BC∥AD且AC=√2且∠BAD=45°通过AD=2,AC=√2和∠BAD=45°,可求出CD=√2由于AC=CD=√2,且AD=2,可求得△ACD是以∠ACD为直角的直角

已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点

\x0d\x0d\x0d\x0d在PAD平面,过A作AH'垂直PC于H'.连接AE、AH'、EH'\x0d提示:\x0d棱形∠ABC=60.所以EA⊥AC.设棱形边为a,则:AE=√3*a/2.\x0

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,

证明:(Ⅰ)∵PA⊥底面ABCD,∴PA⊥CD,又AC⊥CD,PA∩AC=A,故CD⊥平面PAC.又AE⊂平面PAC,∴CD⊥AE.(Ⅱ)由题意:AB⊥AD,∴AB⊥平面PAD,从而AB⊥PD.又AB

如图,四棱锥P-ABCD的底面为菱形且∠ABC=120°,PA⊥底面ABCD,AB=2,PA=√3

1、∵四边形ABCD是菱形,∴对角线AC⊥对角线BD,∵PA⊥平面ABCD,BD∈平面ABCD,∴BD⊥PA,∵PA∩AC=A,∴BD⊥平面PAC,∵BD∈平面PBD,∴平面PBD⊥平面PAC.2、在

在四棱锥P-ABCD中,四边形ABCD是梯形,AD//BC,∠ABC=90,平面PAB⊥平面ABCD,平面PAD⊥平面A

(1)证明:因为AD//BC,∠ABC=90,所以有AD⊥AB,又平面PAB⊥平面ABCD,且AB为交线,所以可证AD⊥平面PAB,根据线面垂直的性质有AD⊥AP;同理可证AB⊥AP,又AB和AD都在

四棱锥P-ABCD中,底面ABCD为梯形,AD//BC,AB=AD=BC/2,∠ABC=60度,平面PAB⊥平面ABCD

(图我就不画了,具体我会文字说明.)取BC中点O,取AB中点E,连接OE、PE,连接AC、AO.三角形ABO是正三角形,四边形AOCD是平行四边形.AB=BC/2,∠ABC=60,三角形ABC是直角三

如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,∠ABC=90°,PD⊥平面ABCD

(1)证明:∵PD⊥面ABCD,AB⊂面ABCD,∴PD⊥AB,∵底面为直角梯形的四棱锥P-ABCD中AD∥BC,∠ABC=90°,∴AB⊥AD∵PD∩AD=D,∴AB⊥平面PAD;(2)∵PD⊥平面

四棱锥p-ABCD中底面ABCD为菱形,∠ABC=60,PA⊥面ABCD,E为BC中点,证AE⊥PD

证明:因为PA⊥面ABCD,AE在平面ABCD内所以:PA⊥AE在棱形ABCD中,因为∠B=60°,所以:△ABC是等边三角形而E是BC的中点所以:AE⊥BC而AD‖BC所以:AE⊥AD又因为:PA,