4. 设是线性方程组的解,且R(A)=2, 则的通解为( ).

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:03:55
4. 设是线性方程组的解,且R(A)=2, 则的通解为( ).
设β是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,

证:设k1α1+k2α2+.,+kn-rαn-r+kβ=0.(*)用A左乘等式两边得k1Aα1+k2Aα2+.,+kn-rAαn-r+kAβ=0.由已知β是非齐次线性方程组Ax=b的解,α1,α2,.

设AX=0是n元齐次线性方程组,若系数矩阵A的秩r(A)=r

因为r(A)=r所以Ax=0的基础解系含n-r个解向量.对Ax=0的任一个解向量,都可由它的任意n-r个线性无关的解向量线性表示(否则这n-r+1个解线性无关,与A的基础解系含n-r个向量矛盾)所以它

设A是n阶方阵,R(A)=n - 2,则线性方程组AX=0的基础解系所含向量的个数是(),

秩是n-2,所以线性方程组AX=0的基础解系所含向量的个数是2,两个相加为n.

一道线性代数证明题题目:设h是非齐次线性方程组Ax=b的一个解,g1,g2,···,gn-r是对应的齐次线性方程组的一个

请注意“反证”两个字.既然是反证,那当然是假设h和g1,g2,···,gn-r这n-r+1个向量线性相关了,同时g1,g2,···,gn-r这是线性无关的,无关性由h的加入而破坏了,所以h当然可以由g

设x0是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,证明

证明:(1)显然x0,x0+a1,x0+a2...x0+an-r都是AX=b的解.设k0X0+k1(X0+a1)+k2(x0+a2)+...+kn-r(x0+an-r)=0则(k0+k1+...+kn

设A是4x5矩阵,且r(A)=3,向量a1,a2,a3是齐次线性方程组AX=0的三个解,则a1,a2,a3的线性相关为—

因为AX=0的基础解系含5-r(A)=2个解向量所以a1,a2,a3线性相关.命题为真.PS.匿名系统扣10分!

设X0是非齐次线性方程组AX=b的一个解向量,α1,α2,…αn-r是对应齐次线性方程组AX=0的一个基础解系,试证

他的自由为以的来,已驻足在他的记忆中照亮残碎的记忆这个的暮一激情尽,为么·他又怎敢站在它的枝叶中

设a1,a2,a3 是四元非齐次线性方程组Ax=B的三个线性无关的解向量,且r(A)=2 ,则Ax=0的通解为

能解的.首先利用齐次线性方程组解空间维数定理得到AX=0的基础解系所含向量个数;再利用非齐次方程组的两个解的差是导出组的一个解,得到AX=0的一个基础解系的解向量;而AX=B的通解结构为(AX=B的一

设a1,a2,a3是4元非齐次线性方程组Ax=b的三个解向量,且秩r(A)=3,且a1+a2=

再问:请问第二行那里的3(a1+a2)-2(a2+2a3)是根据什么得出的呢?为什么书后答案是:x=(1,-2,0,1)T+k(1,2,1,-4)T再答:

设a1,a2,a3是4元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,若a1=[1,2,3,4]^T ,a2+a

R(A)=3,则Ax=0的基础解系含4-3=1个向量而(a2+a3)-2a1=(1,1,1,1)^T是Ax=0的非零解,故是基础解系所以通解为a1+k(1,1,1,1)^T再问:为什么(a2+a3)-

线性代数,设a1,a2,a3是4元非齐次线性方程组Ax=b的三个解向量,且秩r(A)=3,若a1=[1,2,3,4]^T

(A)=3,Ax=0的基础解系只有一个向量A(a1+2a2-3a3)=0,所以a1+2a2-3a3=[1,3,2,4]^T是Ax=0的非零解,方程组Ax=b的通解是K*[1,3,2,4]^T+[1,2

设a是n元非齐次线性方程组Ax=b的一个解,b1,b2,……br(r

设ka+k1b1+...+krbr=0用A左乘等式两边,再由已知得kb=0所以k=0所以k1b1+...+krbr=0因为b1,...,br是基础解系(线性无关)所以k1=...=kr=0所以a,b1

又来求救啦!线性代数! 设a是非齐次线性方程组Ax=b的一个解 , t1,.t(n-r) 是对应的齐次线性方程组

证明:由已知α1,.α(n-r)线性无关.且Aβ=b≠0,Aαi=0,i=1,2,...,n-r(1)设kβ+k1α1+...+k(n-r)α(n-r)=0用A左乘上式两边得kAβ+k1Aα1+...

设A是4x5矩阵,且r(A)=3,向量a1,a2,a3是齐次线性方程组AX=0的三个解

对向量a1,a2,a3施密特正交化即可再问:嗯,这个我知道,但是,施密特正交化的话,不是可以找到3个正交基吗?可是n-r(A)=2,只有两个标准正交基,这里怎么做?再答:找出向量a1,a2,a3的极大

设A是m×n矩阵,非齐次线性方程组Ax=b有解的充分条件是r(A)=m

注:由于非齐次线性方程组AX=b有解的充分必要条件是r(A)=r(A,b)所以只需证明:r(A)=m时,必有r(A)=r(A,b).证明:因为r(A)=m所以A的行向量组的秩=m而A是m×n矩阵所以A

设线性方程组AX=B有3个不同的解,r1r2r3,且R(A)=n-2,n是未知数的个数,则() 选什么为什么

(A)不对.c1r1+c2r2+c3r3是AX=B的解c1+c2+c3=1(B)不一定(C)正确.A(2r1-3r2+r3)=2Ar1-3Ar2+Ar3=2B-3B+B=0.(D)不一定

设A是m行n列的矩阵,且线性方程组Ax = b有解.证明:A的转置的列空间R(A^T)必有Ax = b的解,且有且仅有一

给定线性空间Rn,则A的行向量张成它的子空间,记为U,记U的维数为s.赋予标准内积,使Rn化为欧氏空间,题目等价于证明存在唯一的u∈U,使u与A的每一个行向量的内积都等于对应的b的元素.首先,由于标准

求证:设n个未知数m个方程的其次线性方程组的系数矩阵的秩为r,齐次线性方程组有非零解的充要条件是r

是的这是定理,教材上肯定有你看看教材,哪不明白来追问或直接hi我再问:我知道是定理呀!但教材上没证明!我想知道怎么证明成立!再答:那么非齐次线性方程组的结论可用不?教材中一般先讲非齐次线性方程组将非齐