4-x-y的二重积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:16:09
∫∫dxdy就是圆的面积,结果是4π再问:加上1/π就=4?
分成两部分计算:∫∫bdσ表示一个圆柱的体积,圆柱的底圆为x²+y²≤a²,高为b,因此体积为:πa²b∫∫√(x²+y²)dσ表示一个圆柱
观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6
这一类积分题目,最好的方法肯定是积分变换了.从积分范围出发有令u=x-1/2,v=2y-1/4于是积分范围变成了u^2+v^2≤5/16∫∫(x+y)dxdy=∫∫2(u+1/2+v/2+1/8)du
被积函数z=√[a²-x²-y²],积x²+y²+z²=a²的上半个球面.注意D:x^2+y^2=0,y>=0∫∫(a^2-x^2
对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y) 上下实
求时将不求的当作常数是要领.∫0-2∫0-2(x+y)dxdy=【注:先对y求积分,x视作为常数】∫0-2(xy+y²/2)Ⅰ0-2)dx=∫0-2(2x+2)dx=(x²+2x)
∫∫D|1-x²-y²|dxdy=∫∫D¹(1-x²-y²)dxdy+∫∫D²(x²+y²-1)dxdyD¹:
楼上错了z=9-x^2-4y^2与xy平面围成的立体即z=9-x^2-4y^2>=0x^2+4y^2
积分区域是一个圆心在原点、半径为2的1/4圆原积分=∫dθ∫f(rcosθ,rsinθ)rd
作一个极坐标变换r=根号(x^2+y^2)w=arctan(y/x)则原积分变为了\int_{0,2}dr\int_{0,2pi}dwr^3=8pi看一下你的高数书上关于极坐标那一块.
关键是积分区域的处理! 另外膜拜一下一楼,这个题目也能用极坐标?
用直线x+y=π和x+y=2π将积分区间分成三部分则∫∫|sin(x+y)|δ=∫(0到π)dx∫(0到π-x)sin(x+y)dy-∫(0到π)dx∫(π-x到2π-x)sin(x+y)dy+∫(0
积分区域:y=0和y=√(2x-x²)围成的区域化为极坐标:∫dθ∫f(rcosθ,rsinθ)*rdr再问:图不是个半圆吗为什么不是∫再答:画图看看就知道了是第一象限的半圆
对,就是这个.算出来答案是1/4.
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
将此图形投影到z=0平面,即令z=0,则得出x与y围成的图形,化简得4*x*x+y*y=16,为椭圆,则可得出x,y的范围,然后在此范围对z二重积分,即对4-x*x-(1/4)y*y二重积分即可.
∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2