3阶方阵 =2 5A*

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:56:05
3阶方阵 =2 5A*
设A为三阶方阵,且|A|=-3,求|-3A|

|-3A|=(-3)^3*|A|=(-3)^4=81

A为三阶方阵,| A |=1/2,则 |3A^(-1)-2A*|=?

答案错了吧,我算的也是16啊

设A为3阶方阵,|A|=1/2,求|(2A)^(-1) - 3A*|

因为A*=|A|A^(-1)=(1/2)A^(-1)所以|(2A)^(-1)-5A*|=|(1/2)A^(-1)-(5/2)A^(-1)|=|(-2)A^(-1)|=(-2)^3|A^(-1)|=-8

已知3阶方阵A的特征值为-1 2 3 ,方阵B与A相似则|B^-1+B-E|=?

相似矩阵有相同的特征值,所以B的特征值是-1,2,3B可逆,若B的特征值是λ,则B^-1的特征值是λ^-1而B^-1+B-E的特征值是(λ^-1)+λ-1所以B^-1+B-E的特征值是-3,3/2,7

方阵的特征值问题:设A为3阶方阵,A的三个特征根为1,2,3,则|A^2-4A|=?

A的特征值是1,2,3则A^2的特征值是1^22^23^2即1494A的特征值是4*14*24*3即4812A^2-4A的特征值是1-44-89-12即-3-4-3则|A^2-4A|=(-3)*(-4

设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵

将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1

已知A为3阶方阵,且 |A |=1/2.则 |(2A)* |=

知识点:1.(kA)*=k^(n-1)A*2.|kA|=k^n|A|3.|A*|=|A|^(n-1)|(2A)*|=|2^(n-1)A*|=2^[n(n-1)]|A*|=2^[n(n-1)]|A|^(

设A是n阶方阵,且行列式|A|=25,则行列式 |-4A|=

用性质计算.经济数学团队帮你解答.请及时评价.

线性代数问题:求证:A是5阶方阵,R(A)=3,则A*=0 另对于n阶方阵A,R(A)

知识点:当r(A)=n时,r(A*)=n当r(A)=n-1时,r(A*)=1当r(A)A是5阶方阵,R(A)=3时,r(A*)=0,所以A*是零矩阵.另对于n阶方阵A,R(A)这个不对.应该是r(A*

设4阶方阵满足|3E+A|=0 ,AAT=2E,|A|

由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|

已知四阶方阵A满足|A-E|=0,方阵B=A^3-3A^2,满足BB^T=2E,且|B|

已知矩阵M=2321,求矩阵M的特征值与特征向量.考点:特征值与特征向量的计算.专题:计算题.分析:先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的

一道数学线性代数题已知二阶方阵A= [3 9][1 3]求A^n.(其中A^n表示n个A相乘得到的方阵)

P=[sqrt(9/10),-sqrt(9/10)][sqrt(1/10),sqrt(1/10)]D=6000A^n=P*[6^n0;00]*P^(-1)=6^n*[93][31]再答:又算了一下结果

设A 为三阶方阵且|A|=-2,则|3A²|=?

因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们

已知3阶方阵A的特征值分别为1,-1,-2如何求方阵A?

只知道特征值是没法求出A的,如果还知道特征向量就可以求出A来.

方阵|AB|=|BA|成立吗?A,B为n阶方阵.

不一定成立举反例就行了