3阶方阵 =2 5A*
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:56:05
|-3A|=(-3)^3*|A|=(-3)^4=81
答案错了吧,我算的也是16啊
因为A*=|A|A^(-1)=(1/2)A^(-1)所以|(2A)^(-1)-5A*|=|(1/2)A^(-1)-(5/2)A^(-1)|=|(-2)A^(-1)|=(-2)^3|A^(-1)|=-8
相似矩阵有相同的特征值,所以B的特征值是-1,2,3B可逆,若B的特征值是λ,则B^-1的特征值是λ^-1而B^-1+B-E的特征值是(λ^-1)+λ-1所以B^-1+B-E的特征值是-3,3/2,7
A的特征值是1,2,3则A^2的特征值是1^22^23^2即1494A的特征值是4*14*24*3即4812A^2-4A的特征值是1-44-89-12即-3-4-3则|A^2-4A|=(-3)*(-4
|a1+a2,2b,2r|=|a1,2b,2r|+|a2,2b,2r|=4*2-4=4
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
知识点:1.(kA)*=k^(n-1)A*2.|kA|=k^n|A|3.|A*|=|A|^(n-1)|(2A)*|=|2^(n-1)A*|=2^[n(n-1)]|A*|=2^[n(n-1)]|A|^(
用性质计算.经济数学团队帮你解答.请及时评价.
知识点:当r(A)=n时,r(A*)=n当r(A)=n-1时,r(A*)=1当r(A)A是5阶方阵,R(A)=3时,r(A*)=0,所以A*是零矩阵.另对于n阶方阵A,R(A)这个不对.应该是r(A*
由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|
已知矩阵M=2321,求矩阵M的特征值与特征向量.考点:特征值与特征向量的计算.专题:计算题.分析:先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的
P=[sqrt(9/10),-sqrt(9/10)][sqrt(1/10),sqrt(1/10)]D=6000A^n=P*[6^n0;00]*P^(-1)=6^n*[93][31]再答:又算了一下结果
因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
只知道特征值是没法求出A的,如果还知道特征向量就可以求出A来.
AA*=|A|E(A*)^-1=(1/|A|)A=(1/3)A
不一定成立举反例就行了
|3A|=3³|A|=27×3=81