3x 2y 其中D是由两坐标轴及直线x y=2所围成的闭区域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:49:15
极坐标∫∫(D)ln(1+x²+y²)dxdy=∫∫(D)rln(1+r²)drdθ=∫[0→2π]dθ∫[0→1]rln(1+r²)dr=2π∫[0→1]rl
(3x2y-2xy2)-(xy2-2x2y)=3x2y-2xy2-xy2+2x2y=5x2y-3xy2当x=-1,y=2时,原式=5×(-1)2×2-3×(-1)×22=10+12=22.
思路:分部积分先将(3x+2y)关于y从0到2-x积分,再关于x从0到2积分原积分=6*x*(2-x)+2*(2-x)^2
原式=2x2y+2xy-3x2y-3xy-4x2y=-5x2y-xy当x=-2,y=12时,原式=-9.
极坐标系D:0≤θ≤π/2,0≤p≤2∫∫√(1+x²+y²)dxdy=∫[0,π/2]dθ∫[0,2]√(1+p²)pdp=π/2*(1/3)(1+p²)^(
再问:最后不应该是ln2*π/4吗?再答:是的再问:非常感谢,我还有一道你能帮我做一下么,我已经提问了,你搜一下吧计算二重积分:∫∫(D)ydxdy,其中D:x^2+y^2≤2x,y≥0再答:解法一样
原式=4x2y-6xy+3(4xy-2)+x2y+1=5x2y+6xy-5当x=2,y=-12时,原式=5×4×(-12)+6×2×(-12)-5=-21.
根据题意得:(x3-3x2y)-(3x2y-3xy2)=x3-3x2y-3x2y+3xy2=x3-6x2y+3xy2,故选C.
(2x2y-xy2)-(x2y-3xy2)=2x2y-xy2-x2y+3xy2=x2y+2xy2.故选C.
IIA族均为金属,形成化合物时显+2价,而Y为VIIA族元素,又X为正价,所以Y为负价,且为-1价,故选A:XY2.
原式=2x2y+2xy-3x2y+3xy-4x2y=-5x2y+5xy,当x=-1,y=1时,原式=-5×(-1)2×1+5×(-1)×1=-5-5=-10.
{y=√x{y=x²==>交点为(0,0),(1,1)∫∫_Dx√ydσ=∫(0→1)x∫(x²→√x)√ydy=∫(0→1)x·(2/3)y^(3/2):(x²→√x)
第一道应该先求dx,而后在dy即可第二道同上!
=∫[0,2]dx∫[0,2-x](3x-2y)dy=∫[0,2][3x(2-x)-(2-x)^2]dx=∫[0,2][-x^2+10x-4]dx=32/3
x型:对于闭区域D,0≤x≤1,x≤y≤1∴∫∫xydδ=∫(D1)dx∫(D2)xydy,其中D1即0≤x≤1,D2即x≤y≤1原式=∫D1(1/2x-1/2x³)dx=1/8或者y型:0