3.要使向量 是线性方程组 AX=0的解,系数矩阵 为( )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:39:34
3.要使向量 是线性方程组 AX=0的解,系数矩阵 为( )
1.向量组A1,A2,A3...An是线性方程组AX=0的一个基础解系,向量组

证明:因为两个向量组所含向量个数相同所以只需证明b1,b2,...,bn线性无关.(b1,b2,...,bn)=(a1,a2,...,an)P其中P为n阶方阵,且P=t100...0t2t2t10..

设β1.β2是非齐次线性方程组Ax=b的两个解向量,下列向量任为该方程组解得是()

选BA[1/5(3β1+2β2)]=3/5Aβ1+2/5Aβ2=3/5b+2/5b=b故1/5(3β1+2β2)为该方程组的解

设A是m乘n矩阵,齐次线性方程组Ax=0仅有零解的充分必要条件是.A的列向量线性无关

选a再问:Ϊʲô��再答:���ϵ������ʽ��ֵ���㡣��ֻ�������再问:лл��再答:���á���再问:û���װ�再问:�ڲ���再答:�ڡ���再答:���ҵ绰�������㽲�

设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量.

因为R(A)=3所以Ax=0的基础解系含4-3=1个向量所以2a1-(a1+a2)=(2,3,4,5)^T是Ax=0的基础解系所以Ax=b的通解为(1,2,3,4)^T+k(2,3,4,5)^T

设A是n阶方阵,R(A)=n - 2,则线性方程组AX=0的基础解系所含向量的个数是(),

秩是n-2,所以线性方程组AX=0的基础解系所含向量的个数是2,两个相加为n.

证明实系数线性方程组AX=B有解的充要条件是用它的常数项依次构成的列向量B与它所对应的齐次线性方程组AX=0

证明实系数线性方程组AX=B有解的充要条件是用它的常数项依次构成的列向量B与它所对应的齐次线性方程组AX=0的解空间正交.这不成立!增广矩阵(A,B)=-110-2-3-2-3-1-3-2-3-1通解

设A是n阶方阵,a1、a2是其次线性方程组AX=0的两个不同解向量,则|A|=----拜求!

根据克莱姆法则,若线性方程组的行列式为零,则方程组有唯一解因为现在方程组有两个不同向量解,所以|A|=0

设a1,a2.a3 是四元非齐次线性方程组AX=b的三个解向量,.

这是线性代数啊,秩为3小于4说明方程的通解为齐次通解加上非齐次特解,其中Aa1=b,Aa2=b,Aa3=b,所以A(-a2-a3+2*a1)=0,及其次的通解为才c(-a2-a3+2*a1)T=c(2

设β是非齐次线性方程组Ax=b(b≠0)的解,a1,a2,a3是对应齐次线性方程组Ax=0的线性无关解,证明向量组a1+

设k1(a1+β)+k2(a2+β)+k3(a3+β)=0则k1a1+k2a2+k3a3+(k1+k2+k3)β=0用A左乘等式两边,由已知得(k1+k2+k3)b=0因为b≠0所以k1+k2+k3=

设X0是非齐次线性方程组AX=b的一个解向量,α1,α2,…αn-r是对应齐次线性方程组AX=0的一个基础解系,试证

他的自由为以的来,已驻足在他的记忆中照亮残碎的记忆这个的暮一激情尽,为么·他又怎敢站在它的枝叶中

已知a1,a2,a3是非齐次线性方程组AX=B的三个解向量,则

这题选DA、A(a1+a2+a3)=Aa1+Aa2+Aa3=3B≠B,错B、A(a1+a2-2a3)=Aa1+Aa2-2Aa3=B+B-2B=0≠B,错C、A(1/3a1+a2+a3)=1/3Aa1+

设a1 a2 a3是4元非齐次线性方程组Ax=b的三个解向量

因为(2,3,4,5)^T是Ax=0的非零解,线性无关基础解系又含一个向量那么这个非零解就是基础解系

线性方程组AX=0的基础解系含有解向量的个数是多少?

A行初等变换,可得R(A)=1,即AX=0有n-1个自由变量,即基础解系含有n-1个线性无关的列向量.

6.设A是4×6矩阵,R(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )

本题中自由未知量个数为4个,则基础解系中向量的个数为6-4=2

假如A是n阶矩阵,b是n维非零向量,r1,r2非齐次线性方程组AX=b的解,m是齐次线性方程AX=0的解.

若r1,r2线性相关则r1,r2成倍数关系,既有r1=kr2而知道r1-r2为齐次方程的解,r1-r2=(1-k)r2所以有A(1-k)r2=(1-k)Ar2=0与Ar2=b矛盾!,所以两个无关如果A

已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且向a,b,c是3个不同解向量,则通解是

4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,所以其导出组的基础解系中只有一个解向量(4-3=1),而非齐次线性方程组的任意两个解的差是导出组Ax=0的解,则a-b即为Ax=0的解,k(a-b)就

设 x1 x2 x3是非齐次线性方程组 AX = b的任 意两个解向量,则 是其导出方程AX=0的解

他们三不是线性无关的啊,一式加二式减三式等于0再问:是说方程组有3个线性无关的解再答:你是有多二,请你逻辑清楚点,我说的是什么,是齐次方程组Ax=0的解那三个线性相关,而n-r是线性无关解的个数再问:

齐次线性方程组解的集合是向量空间,可是非齐次线性方程组解的集合不是向量空间,为什么?设Ax=b,那么2a=2b为什么就不

一个向量的集合是不是向量空间,起码有个必要条件,就是0向量要属于这个集合,现在如果b不为0,那么显然0向量就绝对不是方程Ax=b的解,换句话说Ax=b的解集合,不含有0向量,因而绝不可能构成向量空间.

设有4元非齐次线性方程组Ax=b,且R(A)=3,a1,a2,a3是Ax=b的三个解向量

R(A)=3说明AX=0的基础解系含4-3=1个解向量A(a1-(a2+a3)/2)=Aa1-(Aa2+Aa3)/2=b-(b+b)/2=0所以a1-(a2+a3)/2是AX=0的解所以它就是基础解系