同阶实对称矩阵全体,对于矩阵的加法和乘法
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:36:23
是的它们的等价标准形一样Er000
表示为:abcbdecef只有6个数字在变化,让一个数是1,其余为0,即可得到基,由6个矩阵组成.再问:一般的规律是什么?n(n+1)/2吗?再答:是的
线代书上是对的合同不要求是实对称的.实对称矩阵的特殊在于可以正交相似于对角阵
共有n(n+1)/2类!因为实数域上全体n阶对称矩阵组成的集合构成一个n(n+1)/2的线性空间,按照同构的原理,共有n(n+1)/2类!
不是的.再问:�����أ������Ҹ�������〜������ô��Ӧ�ã�再答:A=(1/3)*12-22-2-1212A�������,�����ǶԳƾ���
(AB+BA)T=(AB)T+(BA)T=BTAT+ATBT=BA+AB=AB+BA,所以AB+BA是对称矩阵;(AB-BA)T=BTAT-ATBT=BA-AB=-(AB-BA)所以AB-BA是反对称
选A. 设A^-1的特征值为a1,a2,...an.则A的特征值为1/a1,1/a2,.1/an.因为所有an都大于0,所以所有1/an大于0.所以选A 另外B项如果改成a11>0以及各阶行列式的
V={A|A上三角矩阵}由于矩阵的加法与标量乘法性质,所以对线性运算性质是不证自明的.只要证明:对加法与标量乘法的封闭性1)A,B∈V,上三角矩阵+上三角矩阵仍然是上三角矩阵,故A+B∈V2)A∈V,
是的这是因为对称矩阵的和仍是对称矩阵
线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T
你是说P^-1AP=对角矩阵中的正交矩阵P吧它不唯一.P的列向量来自相应齐次线性方程组的基础解系而基础解系不是唯一的所以P也不唯一
我记得应该是特征向量正交和规范矩阵是充要关系.不一定是实对称.当然反过来是对的(谱分解定理)
设正惯性系数是p,负惯性系数是q,可以先列举一下,当p=0,q可以从0取到n,这样就有n+1种情况当p=1,q可以从0取到n-1,这样就有n种情况.当p=n,q只能取0,是1种情况所以1+2+3+.+
2维.主对角线上的元素为0.E_12,E_21为这个线性空间的一组基.
由于A为实对称矩阵,所以存在正交矩阵U,使得U'AU=B(‘表示转置,B为对角矩阵),则A=UBU',故α’Aα=α'UBU'α=(U'α)'B(U'α)=0,令β=U'α=[b1,b2,bn]',则
A=CC^T=>A+iB=C(I+iC^{-1}BC{-T})C^T括号内的矩阵特征值实部都是1,所以非奇异再问:老师,括号内的矩阵特征值实部为什么是1呀~再答:因为C^{-1}BC^{-T}是实对称
做谱分解A=QΛQ^T然后取对角阵D使得D^3=ΛB=QDQ^T就满足条件再问:什么是谱分解啊?再问:什么是谱分解啊?再问:什么是谱分解啊?
(AB+BA)T=(AB)T+(BA)T=BTAT+ATBT=BA+AB=AB+BA,所以AB+BA是对称矩阵;(AB-BA)T=BTAT-ATBT=BA-AB=-(AB-BA)所以AB-BA是反对称
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
由于实对称矩阵的k重特征值有k个线性无关的特征向量而与a正交的线性无关的特征向量恰有两个所以与a正交的的向量必为2重特征值3的特征向量