3 14-3 7cos²5π 12

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:14:33
3 14-3 7cos²5π 12
cos*π/12—sin*π/12

原式=根号2*(根号2/2*cosπ/12—根号2/2*sinπ/12)=根号2*(sinπ/4cosπ/12—cosπ/4sinπ/12)=根号2*sin(π/4-π/12)=根号2*sin(π/6

计算cosπ/12*sinπ/12

=(1/2)sinπ/6=(1/2)×(1/2)=1/4这题是代入sin2α=2sinαcosα求得的

已知cos(π/6-a)=根号3/3,求cos(5π/6+a)-cos²(π/3+a)

/>cos(5π/6+a)=cos[π-(π/6-a)]=-cos(π/6-a)=-√3/3cos²(π/3+a)=cos²[(π/2)-(π/6-a)]=sin²(π/

cos(π/4+x)=3/5,17π/12

原式=[2sinxcosx+2sin²x]/[(cosx-sinx)/cosx]=[2sinxcosx(sinx+cosx)]/[cosx-sinx]=[sin2x][(sinx+cosx)

求值:sin(π/12)+cos(π/12)

[sin(π/12)+cos(π/12)]^2=[sin(π/12)]^2+2sin(π/12)*cos(π/12)+[cos(π/12)]^2=1+22sin(π/12)*cos(π/12)=1+s

化简cos(π/12)*cos(5π/12)

cos(π/12)*cos(5π/12)=cos(π/12)*cos(π/2-π/12)=cos(π/12)*sin(π/12)=(1/2)*sin(π/6)=(1/2)*(1/2)=1/4

帮我解,证明恒等式(cos平方5π/12)+(cos平方π/12)+(cos5π/12)(cosπ/12)=5/4

证明cos5π/12=cos(π/2-5π/12)=sinπ/12∴cos²5π/12+cos²π/12=sin²π/12+cos²π/12=1(cos5π/1

cos方5π/12+cos方π/12+cosπ/12*cos5π/12 最后等于5/4的过程.

cos²5π/12+cos²π/12+cosπ/12*cos5π/12由于cos5π/12=sin(π/2-5π/12)=sinπ/12原式=sin²π/12+cos&#

cos方5π/12+cos方π/12+cosπ/12*cos5π/12 最后等于4/5的过程.

cos^2(π/4+π/6)+cos^2(π/4-π/6)+1/2[cos(5π/12+π/12)+cos(5π/12-π/12)]=cos^2(π/4+π/6)+cos^2(π/4-π/6)+1/2

计算cos(a+5π/12)cos(a+π/6)+cos(π/12-a)cos(π/3-a)

cos(a+5π/12)cos(a+π/6)+cos(π/12-a)cos(π/3-a)=sin(π/2-(a+5π/12))cos(a+π/6)+cos(π/12-a)sin(π/2-(π/3-a)

已知cos(α+β)=12/13,cos(2α+β)=3/5,若β∈(0,π/2),求cosα的值.

因为cos(α)=cos((2α+β)-(α+β))=cos(2α+β)cos(α+β)-sin(2α+β)sin(α+β),又cos(α+β)=12/13,cos(2α+β)=3/5且β∈(0,π/

数学,证明恒等式(cos平方5π/12)+(cos平方π/12)+(cos5π/12)(cosπ/12)=5/4.

解本题就是证明cos^2(75°)+cos^2(15°)+cos(75°)cos(15°)=5/4我们用分析法证明欲证cos^2(75°)+cos^2(15°)+cos(75°)cos(15°)=5/

如果cos(π+A)=−12

因为cos(π+A)=−12,所以cosA=12,sin(π2+A)=cosA=12.故答案为:12.

COSπ/5乘以COS2π/5

利用黄金分割容易得COSπ/5=(根号5+1)/4COS2π/5=(根号5-1)/4乘起来是1/4

化简cos(π/12-α)-根号3cos(5π/12+α)

cos(π/12-α)-√3cos(5π/12+α)=2[(1/2)cos(π/12-α)-(√3/2)sin(π/12-α)](∵cos(5π/12+α)=sin[π/2-(5π/12+α)]=si

sin(π/10)cos(π/5)

原式=2sin(π/10)cos(π/10)cos(π/5)/2cos(π/10)=sin(π/5)cos(π/5)/2cos(π/10)=2sin(π/5)cos(π/5)/4cos(π/10)=s

cos^2x/sin( π/4+x)cos(x+π/4),求① f(5π/12)

f(x)=cos^2x/sin(π/4+x)cos(x+π/4),f(5π/12)=cos²(5π/6)/[(sin2π/3)cos(2π/3)]=(3/4)/(-√3/2*1/2)=-√3

若cos(5π12

∵5π12+θ+π12-θ=π2,∴π12-θ=π2-(5π12+θ),∴sin(π12-θ)=sin[π2-(5π12+θ]=cos(5π12+θ),∴sin(π12-θ)=cos(5π12+θ)=

已知cos(5π12

∵−π<α<−π2∴−7π12<α+ 5π12<−π12∵cos(5π12+α)=13∴sin(α+5π12)=−223∵(5π12+α)+(π12−α)=π2,∴cos(π12−α)=co

求COSπ/5*COS2π/5

原式=2sinπ/5cosπ/5cosπ/5/(2sinπ/5)=sin2π/5cosπ/5/(2sinπ/5)=2sin2π/5cosπ/5/(4sinπ/5)=sin4π/5/(4sinπ/5)=