变量相关性分析p值为0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:55:46
dummyvariable?它本来不就是从多分类变量中造出来的哑变量(或虚拟变量)吗,就是要转化成这样的2分类变量来用的.值写什么无所谓,只要是两个不同的值即可,他们的大小只影响相关系数的符号,因为是
这个不是回答过了么?
相关分析,和是否保留变量没任何关系你说的是相关分析的显著性如果不显著,2个原因1是你设计有误,数据收集的质量控制不好2是数据原本如此,不能改变事实我经常帮别人做这类的数据分析的再问:额,我发现是版本问
pearson相关性分析的条件是两个变量之间呈线性的相关趋势,此时的相关系数大小会比较准确至于两个变量是否相互影响都没关系另外相关分析只能说明两者之间的互相关系,并不能说明因果关系
一般直接看相关系数和显著性双侧.你这个一列一列的看要方便些,比如第一列,表示为x1和其他各变量之间的相关性,x1和x2的相关系数为-.022,显著性双侧为0.972,说明这两个变量间无相关性,依次类推
Statisticallyspeaking(或Instatisticsterms),ifP'svalueofthecorrelationcoefficientbetweenthetwovariable
你看相关系数较大的是哪几个变量啊,从相关分析表里就可以很直观的看到
首先建立两个变量如x,y,把数据录入进去(两列),在analysis里头,选correlate,分别把x,y放进去,点OK就可以得到结果.再问:我用的是中文版的SPSS,点击:分析—相关-双变量相关,
相关分析看变量的相关性首先看显著性检验的值,如果<0.05就说明两者有显著相关所以你的显著性检验是0.557说明两个变量之间在95%的置信区间内没有显著地相关性.至于pearson相关性值的大小必须在
首先建立两个变量如x,y,把数据录入进去(两列),在analysis里头,选correlate,分别把x,y放进去,点OK就可以得到结果.
不能只看相关系数的大小,主要看显著性水平,你做出来的相关系数确实是有些低,很可能是与数据量比较多有关.如果你分析过程没有错误,p真的等于0.003的话,应该是显著相关的.再问:谢谢,我还想问一下,我的
“员工缺勤率”下面有两个分支问题(变量)你可以采取下列两种方法来处理1、你可以将员工缺勤率下面的两个分支变量合并成一个,譬如,假如你把员工缺勤率分为员工迟到次数和员工早退次数的话,你就可以把这两个加起
如果是看读某本书和性别之间是否有关系用关卡方检验
一般统计分时所做的相关是指Pearson相关或者Spearman相关,而Losgistic回归也即多元回归分析是一个更高层次的相关分析,数据要求质量比较高.如果数据用Pearson相关或者Spearm
不能,所谓的模型是能够提供预测效果的相关分析仅仅是一个笼统的讨论两个变量之间是否有关系,但是这个相关性的大小也不是他们之间的实际相关性,所以不能算作模型
这个……发现你对统计一点都不理解……性别是分类变量你这里的应变量是等级分类变量暂时还不知道你要分析哪些指标的相关性.建议:找对统计了解的人解决.
那你分析错误了,操作对吗再问:对的,回归分析得出结果和相关性分析的不一样,这种情况不存在的吗。可以解释吗再答:肯定做错了的,一般不会
负相关,就是一个变量随另一个变量的增大而减小.控制变量就是实验中的无关变量,需要对其加以控制以免影响实验结果.
虚拟变量,你可以试试0-1这样的虚拟变量,含0的,对应的y低,含1的对应的y高(假设正相关).其实主要看你的虚拟变量打算加在哪里,加在常数项就这么做,加在系数项的话就是另外一组数据了.你可以先写个含虚
看里面的Pearson那一行就是相关系数是正数为正相关负数为负相关一般来说|r|>0.95存在显著性相关;|r|≥0.8高度相关;0.5≤|r|