发散数列加负号
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:29:43
发散数列,单独的(n+1)/n是收敛数列,可是乘以-1之后,就不收敛了.故发散
{e^(in)|n=1,2,...}是复平面单位圆上的序列.因为单位圆是有界闭集,所以必存在收敛子序列{e^(in_s|s=1,2,...},设e^(in_s)----->e^(ai),0e^(ai+
这样的证明,只要举出反例来就可以了如:xn=(-1)^nyn=(-1)^n两个数列都是发散的但xnyn=1就是收敛的
假设收敛,可以设a=limsinn,则limsin(n+2)=a.而sin(n+2)-sinn=2cos(n+1)sin1,得lim2cos(n+1)sin1=a-a=0,则limcos(n+1)=0
收敛convergence与某个实数a无限接近的数列{an},即当时,就说数列{an}是收敛的,否则就说{an}为发散数列.例如,{}是收敛数列,因为当n无限增大时,与实数0无限接近,也即.{}也是收
因为|sin(π/n)|无穷时,1/n-->0因此当n-->无穷时,xn-->0,收敛.
很简单呀1/n就是个发散数列但取子序列1/n[i]其中取n[i]=n²就是子数列就是1/n²收敛
(1)xn<2^n/3^n<(2/3)^n limx->oo时 xn< (2/3)^n<0(2)n*(-1)^n &n
收敛就是有极限,发散没有极限.够简单吧?
取n为偶数,我们得到数列的一个子列为1,1,1,1,1..其极限为1取n为奇数,我们得到数列的另一个子列3,3,3,...,其极限为3因此,原数列发散
对,收敛和发散是互补的,发散的定义是没有极限摆动数列如-1,1,-1,1..是没有极限的,因为无穷处有-1和1,不逼近于一点,所以发散
一个正数都有两个平方根,一正一负.所以算平方根要加正负号不加正负号的是算术平方根,只取>0的平方根,一般用在几何等长度不可能为负数的情况
如果{an+bn}收敛因{an}也收敛对任何e都有N1,N2使k>N1就有|(ak+bk)-L|N2有|(ak)-A|N1,N2中较大者,有|bk-(L-A)|=|(ak+bk)-L+(ak-A)|无
这个不一定的:比如Bn=-An,显然{An+Bn}收敛到0比如An={1,0,1,0,……},Bn={0,1,0,1……}显然{AnBn}收敛到0
加减的时候,把高阶的无穷小直接舍去如1+1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如1/n*sin(1/n)用1/n^2来代替
可能收敛,也可能发散
不是的最简单的1,-1,1,-1,1,-1,1,-1.这样的数列既不是收敛数列也不是发散数列.
艽嬖谡齆,使得n>N时,不等式|Xn-a|
我尝试反证法证明一下首先sin(a+1)-sina=sin(a+1/2-1/2)-sin(a+1/2-1/2)=2sin1/2*cos(a+1/2)sin(a+2)-sin(a+1)=2sin1/2*
可能收敛,也可能发散.收敛的例子,xn=0,无论yn啥样,xnyn都收敛发散的例子,xn=1/n,yn=n^2再问:谢谢O(∩_∩)O再问:谢谢O(∩_∩)O