发散数列加负号

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:29:43
发散数列加负号
xn=[(-1)^n+1] *[(n+1)/n] 是收敛数列还是发散数列?

发散数列,单独的(n+1)/n是收敛数列,可是乘以-1之后,就不收敛了.故发散

证明数列cos(n)和sin(n)的发散性

{e^(in)|n=1,2,...}是复平面单位圆上的序列.因为单位圆是有界闭集,所以必存在收敛子序列{e^(in_s|s=1,2,...},设e^(in_s)----->e^(ai),0e^(ai+

数列xn,yn发散,证明数列xnyn不一定发散.

这样的证明,只要举出反例来就可以了如:xn=(-1)^nyn=(-1)^n两个数列都是发散的但xnyn=1就是收敛的

数列sin n是收敛还是发散的?

假设收敛,可以设a=limsinn,则limsin(n+2)=a.而sin(n+2)-sinn=2cos(n+1)sin1,得lim2cos(n+1)sin1=a-a=0,则limcos(n+1)=0

发散数列 收敛数列定义

收敛convergence与某个实数a无限接近的数列{an},即当时,就说数列{an}是收敛的,否则就说{an}为发散数列.例如,{}是收敛数列,因为当n无限增大时,与实数0无限接近,也即.{}也是收

解释一下数列Xn=1/n sin(π/n)为什么不是发散数列

因为|sin(π/n)|无穷时,1/n-->0因此当n-->无穷时,xn-->0,收敛.

一个发散的数列也肯能有收敛的子数列 举例

很简单呀1/n就是个发散数列但取子序列1/n[i]其中取n[i]=n²就是子数列就是1/n²收敛

如何判断数列的极限发散及收敛?

(1)xn<2^n/3^n<(2/3)^n limx->oo时 xn< (2/3)^n<0(2)n*(-1)^n  &n

解释下发散数列和收敛数列

收敛就是有极限,发散没有极限.够简单吧?

证明数列{2-(-1)^n}发散

取n为偶数,我们得到数列的一个子列为1,1,1,1,1..其极限为1取n为奇数,我们得到数列的另一个子列3,3,3,...,其极限为3因此,原数列发散

数列是否不发散就收敛啊,发散的定义是没有极限吗

对,收敛和发散是互补的,发散的定义是没有极限摆动数列如-1,1,-1,1..是没有极限的,因为无穷处有-1和1,不逼近于一点,所以发散

平方根加正负号的问题,

一个正数都有两个平方根,一正一负.所以算平方根要加正负号不加正负号的是算术平方根,只取>0的平方根,一般用在几何等长度不可能为负数的情况

设{an}与{bn}中一个是收敛数列,另一个是发散数列.证明{an±bn}是发散数列.

如果{an+bn}收敛因{an}也收敛对任何e都有N1,N2使k>N1就有|(ak+bk)-L|N2有|(ak)-A|N1,N2中较大者,有|bk-(L-A)|=|(ak+bk)-L+(ak-A)|无

数列收敛性数列{an},{bn}都发散,分析数列{an+bn}{an*bn}的收敛性

这个不一定的:比如Bn=-An,显然{An+Bn}收敛到0比如An={1,0,1,0,……},Bn={0,1,0,1……}显然{AnBn}收敛到0

如何快速判断一个数列是收敛还是发散

加减的时候,把高阶的无穷小直接舍去如1+1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如1/n*sin(1/n)用1/n^2来代替

收敛数列乘发散数列是什么数列?

可能收敛,也可能发散

是不是一个数列只要不是收敛数列就一定是发散数列?

不是的最简单的1,-1,1,-1,1,-1,1,-1.这样的数列既不是收敛数列也不是发散数列.

收敛数列和发散数列是什么意思?

艽嬖谡齆,使得n>N时,不等式|Xn-a|

怎样证明数列{sin(n)}发散?

我尝试反证法证明一下首先sin(a+1)-sina=sin(a+1/2-1/2)-sin(a+1/2-1/2)=2sin1/2*cos(a+1/2)sin(a+2)-sin(a+1)=2sin1/2*

若极限limxn=0,{yn}发散,则数列{xnyn}

可能收敛,也可能发散.收敛的例子,xn=0,无论yn啥样,xnyn都收敛发散的例子,xn=1/n,yn=n^2再问:谢谢O(∩_∩)O再问:谢谢O(∩_∩)O