反常积分收敛,则分母取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:37:21
反常积分收敛,则分母取值范围
设反常积分I=∫(2,+∞)dx/[x(lnx)^k],问k为何值时,I发散,I收敛,I取得最小值

∫(上限为正无穷,下限为2)1/x*(lnx)^kdx=∫1/(lnx)^kdlnx(x上限为正无穷,下限为2)=1/(1-k)∫d(lnx)^(1-k)(x上限为正无穷,下限为2)=[1/(1-k)

当k为何值时,反常积分∫(e,正无穷)dx/[x(lnx)^k]收敛?当K为何值时,这反常积分发散?

∫(上限为正无穷,下限为e)1/x*(lnx)^kdx=∫1/(lnx)^kdlnx(x上限为正无穷,下限为e)=1/(1-k)∫d(lnx)^(1-k)(x上限为正无穷,下限为e)=[1/(1-k)

若广义积分∫(上限为正无穷,下限为e)1/【x*(lnx)的k次方dx收敛,则k的取值范围为,

∫(上限为正无穷,下限为e)1/x*(lnx)^kdx=∫1/(lnx)^kdlnx(x上限为正无穷,下限为e)=1/(1-k)∫d(lnx)^(1-k)(x上限为正无穷,下限为e)=[1/(1-k)

有关于反常积分收敛发散的判断,这里有个反常积分我判断不出来

当x趋于正无穷时,e^x/√x也趋于正无穷,所以这个积分显然发散.

证明反常积分e^(-px)dx在0到正无穷处收敛,

证明:∫(0,+∞)e^(-px)dx=-1/p*e^(-px)|(0,+∞)=lim-1/p*e^(-px)-lim[-1/p*e^(-px)]x->+∞x->0=0+1/p=1/p故∫(0,+∞)

若广义积分“ ∫ 上限+无穷 下限0,dx/x的k次幂 ” 收敛,求K的取值范围.

当k=1时,∫dx/x的k次幂=lnx,广义积分“∫上限+无穷下限0,dx/x的k次幂”发散当k1时,∫dx/x的k次幂=x^(1-k)/(1-k),广义积分“∫上限+无穷下限0,dx/x的k次幂”发

k为什么值时,反常积分S上限正无穷,下限2 ,1/[x*(lnx)^k] dx 收敛 ,什么时候又发散,什么值时 这个反

做变量代换:lnx=t即可----------------------------------------------------------------------并不是我不认真,我是认为关键性的步

定积分与取值范围问题

解题思路:考察导数的应用解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq

怎样判断反常积分是收敛还是发散?比如说∫(0,1)dx/x,

同学,这四个不是反常积分啊再问:题目是这样啊。。再答:对对,我错了,这是第二类反常积分,等我写一下再答:

判断这个反常积分的敛散性?如果收敛那么求其值?

令x=exp(t),则lnx=t,dx=d[exp(t)]=exp(t)dt,x=1时,t=0,x趋于无穷时,t趋于无穷.原来积分化为∫(0

判断下列各反常积分的敛散性,若收敛,计算其值..谢谢咯

第一个,被积函数为奇函数,结果为0第二个,可以计算,结果为pi/4再问:求详解啊再答:第一个,由微积分的定理直接得出,不用多说;第二个,见下图不好意思,第一次算漏了系数2

判断下列反常函数的敛散性,如果收敛,计算反常积分的值

/>第一题收敛第二题发散详细过程如图满意请采纳o(∩_∩)o 

高数反常积分收敛 

D再问:为什么?再答:你哪个不会再问:C再答: