双曲线任意一点到两焦点的距离之和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:52:58
双曲线任意一点到两焦点的距离之和
双曲线上任意一点到两焦点的距离之和怎么求

用两次两点间距离公式就可以了啊

求证:等轴双曲线上任意一点到对称中心的距离,是他到两焦点距离的等比中项

假设该双曲线是x^2-y^2=a^2,则可知双曲线的离心率e=√2.便于研究,我们可以设一点P(x0,y0)在双曲线的右支,且在第一象限.双曲线的对称中心就是O点嘛,双曲线左、右焦点分别为F1(-c,

求证:双曲线x^2-y^2=a^2上任意一点P到两焦点的距离的积等于P到这双曲线中心的距离的平方(a>0)

设P点坐标为(x,y)则P到原点的距离为√(x^2-y^2)=√(2x^2-a^2)所以P到原点的距离的平方为2x^2-a^2化简该双曲线方程,得:x^2/a^2-y^2/a^2=1根据双曲线的交半径

双曲线上任意一点到两个焦点的距离之和等于多少

没有和,差是2a再答:我看过你的题目了,选根号10再答:把它平方,你就会了再问:答案是二倍根号⑩再答:是的发错了,你试试我说的方法算算再答:我现在没法把过程发给你,你要是平方后还不会问我再问:这样算出

已知双曲线的一个焦点坐标是(0.-13),双曲线上一点P到两焦点距离之差的绝对值为24,求此双曲线的标准方

中心对称点是原点吧?设双曲线方程为:y^2/b^2-x^2/a^2=1,设二焦点为F1和F2,||PF1|-|PF2||=24,根据双曲线定理,2b=24,b=12,c=13,a^2=c^2-b^2=

【等轴双曲线问题】1.为什么等轴双曲线上任意一点到中心的距离是它到两个焦点的距离的比例中项.2.

2.等轴双曲线的方程一定是x²-y²=a²,不能是y²-x²=a²吗?正确,可以统一为x^2-y^2=k,k不为1.1为什么等轴双曲线上任意

已知双曲线2x的平方-3y的平方=18,则双曲线上一点到两焦点的距离之差的绝对值是多少,焦距是多少?

双曲线2x的平方-3y的平方=18即x²/9-y²/6=1∴a²=9,b²=6∴c²=9+6=15即a=3,c=√15利用双曲线的定义,双曲线上一点到

一个焦点坐标为F1(0,-13),双曲线上一点P到两焦点距离之差的绝对值24,求双曲线标准方程

双曲线上一点P到两焦点距离之差的绝对值24即2a=24a=12一个焦点坐标为F1(0,-13),即C=13双曲线中C^2=a^2+b^2所以b=5双曲线标准方程y^2/144-x^2/25=1

求证双曲线x^2-y^2=r^2上的任意一点p到两个焦点的距离之积等於p至双曲线的中心之距离的平方

设左焦点为F1,右焦点为F2,双曲线的中心为O(坐标轴原点),则a=r,b=r,c=根号(2)r在△PF1F2中,OP为F1F2的中线,由中线定理得:PF1^2+PF2^2=2OP^2+2OF1^2=

已知双曲线的一个焦点坐标F1(0,-13),双曲线上一点P到两焦点距离之差的绝对值为24,求双曲线方程

已知双曲线的一个焦点坐标F1(0,-13),双曲线上一点P到两焦点距离之差的绝对值为24,求双曲线方程由||PF1|-|PF2||=24得a=12由F1(0,-13)得c=13b^2=c^2-a^2b

双曲线上任意一点到两焦点的距离的差不是应该等于焦距长吗 为什么等

双曲线的定义是到两定点的距离之差是定值的点的集合.这里的定值为2a.两定点(即是两焦点)的距离为2c.如果按你那种思路进行的话就可以得到三角形中两边之差等于第三边,与三角形的定义也不符嘛

2.根据下列双曲线方程,判断其焦点位置,并求出双曲线上任意一点到两焦点距离之差的绝对值及焦点坐标:

2(1)(正负3根号3,0)2a=6根号2(2)(0,正负4)2a=2(3)(正负3根号2,0)2a=4根号33(1)C=2根号15(2)c=3根号54(1)y^2/9-(x^2/16)=1(2)(x

已知双曲线九分之x平方-五分之y平方=1,则双曲线上任意一点到两个焦点的距离之差的绝对值为

a²=9,b²=5a=3所以由双曲线定义双曲线上任意一点到两个焦点的距离之差的绝对值为|2a|=6

求证:双曲线上任意一点到它的两条渐沂线距离之积为常数

参数方程法利用双曲线的参数方程:x=secty=tgt而两条渐近线的方程分别为bx+ay=0bx-ay=0故到bx+ay=0的距离为|absect+abtgt/(a^2+b^2)^0.5|到bx-ay

双曲线上一点到两焦点的距离之和是2a吗?

不是,双曲线上的点到两焦点的距离的差的绝对值才是2a

求证:等轴双曲线上任意一点到两渐近线的距离之积食常数

证明:等轴双曲线的方程为:x^2/a^2-y^2/a^2=1,即x^2-y^2=a^2=k,k为常数,两条渐进线方程分别为x+y=0和x-y=0,设双曲线上任意一点M(x0,y0),点M到两渐进线的距

求证:等轴双曲线上任意一点到两渐近线的距离之积是常数

请参照我下面的回答看看你的问题吧设等轴双曲线的方程为:x²/a²-y²/a²=1,即x²-y²=a²两条渐进线方程分别为y=-x=

求证:等轴双曲线上任意一点到两渐近线的距离之积是常数。

解题思路:(1)写出等轴双曲线方程,及其渐近线方程。(2)设动点坐标,应用点到直线的距离公式证明解题过程:附件